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Or Thoughts ... From an Old Guy

⇐= ME

(before shaving and

haircut)
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Context

from MIT Technology Review

Karen Hao, 03/11/2020
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Information Retrieval: Images

image search gives
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Information Retrieval becomes ML

Information Retrieval (IR): from a single query (image, text), retrieve “best” matching

documents. e.g. text/image search engine

I this is like learning from just one example!

I called zero/one-shot learning in Deep Neural Networks, especially for images

I state-of-the-art in text IR is hybrid IR and transformer-based language models!
I see SIGIR 2018 tutorial by Xu, He and Li
I see QGenHyb by Ma, Korotkov, Yang, Hall, McDonald, EACL 2021
I to my knowledge IR techniques and earlier one-shot researchers did not intersect!
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Context, cont.

I Deep Learning successes:
I machine translation, speech understanding
I bio-informatics (e.g., 3-D protein folding)
I object/person tracking in video

I Machine Learning in the guise of Deep Learning is now happening at a
world-wind pace:
I a phase shift happening a few years ago,
I huge teams making rapid advances,
I results/methods already outdated and superceded at their point of publication,

I How can we employ these techniques in traditional computer science?
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Software Systems adding AI/ML

I source data needs quality management, versioning, etc. ⇐= the biggest problem

I AI systems components entangled in complex ways

I ML knowledge required of developers to harness the ML tools

I whole new testing and development frameworks needed

I explainability, fairness, transparency, fault tolerance, ...

30 years ago a similar problem in AI was faced when integrating/developing expert

systems with traditional software:

I machine learning was proposed as the solution!

I even then the problem of data quality management was recognised
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AI/ML Dev. Tasks

from “Software Engineering for Machine Learning: A Case Study,” Amershi et al., ICSE 2019
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AI/ML Dev. Pipeline

from “Software Engineering for Machine Learning: A Case Study,” Amershi et al., ICSE 2019

different to traditional agile or other!

near identical to the data science dev. pipeline from 2013
and they’ve had huge trouble integrating into the career/HR environment
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Programming Languages for AI/ML

I support for building & testing ML models

I libraries for:
I streaming data
I hyper-parameter optimisation
I probability components
I matrices and tensors
I auto-differentiation
I model components (convolutions, transformers, etc.)

I probabilistic programming
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AI/ML for Programming Languages

I debugging, testing and code reviews

I comments checking and generation

I code search and matching

I auto-generating software

I smart compilation

I auto-generating distributed and/or low-level code
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What did We Learn from Old ML?
I how to do exponential family, linear and partitioning models well

e.g., XGBoost, online LDA, Gaussian mixtures, logistic regression
I plus how to augment them with fancy mathematical tricks

e.g., kernels, non-parametric Bayesian

i.e., infinite vectors

i.e., cases where learning admits computational simplifications

I models as first-class objects
e.g., Bayesian & Markov networks, neural networks

I statistical ML theory
e.g., bias-variance tradeoff, variational methods, ensembles

e.g., Bayesian MCMC as “gold standard” learning
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What did We Learn, cont.?

I cost functions (using statistical ML theory)

e.g., regularisation, metrics and divergences,

i.e., the theory of objective functions for deep NNs

I paradigms

e.g., online learning, active learning, transfer learning

I learning on networks
I deterministic networks
I probabilistic networks
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A Non-trivial Network

see playground.tensorflow.org
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Deep Representations

from https://thedatascientist.com/what-deep-learning-is-and-isnt/

Observation: different layers of the network “learn” alternative representations.
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Deep Architechures

from “Memory-Based Network for Scene Graph with Unbalanced Relations”, MM’20, Wang et al.

Complex systems are built from neural modules.
16 / 42
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How Does Deep Learning Innovate?
I Model/Spec driven black-box algorithms ease the workload of developers.

I machine learning without statistics!

I Porting down to GPUs or multi-core allows real speed.
I Learning representations and discovering higher order concepts.

I convolutions, structures, sequences, ...
I high capacity makes them very flexible in fitting and does implicit parallel search

I self-supervision
i.e., pre-training networks with fabricated but useful tasks

I Allows “modelling in the large”:
I multi-task learning, imitation learning, meta-learning
I components like convolutions, structures, sequences, ...
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Why is Deep Neural Nets Successful?

from Stanford Uni. NLP course,

CS224N/Ling284 2020
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Ensembling

I Have set of (x , y) data Data and network parameters θ ∈ Θ.

I The Bayesian posterior, predicting y given new test point x :∫
θ∈Θ

p(y | x , θ)︸ ︷︷ ︸
prediction using parameters θ

· p(θ|Data)︸ ︷︷ ︸
posterior on parameters θ

dθ

I The gold standard algorithm is complex MCMC

I The simple ensemble says to train a small set of “good but different” models Θ̂

and pool them together
1
|Θ̂|

∑
θ∈Θ̂

p(y | x , θ)

I First did as a student’s masters project at University of Sydney in 1988.
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The (Frequentist) Laws of Learning

I The First Law of Learning for model family H (Geman & Geman, 1992)

Mean-Squared-Error(H) = Bias(H)2 + Variance(H) + IrreducibleError

I The Second Law of Learning for ensemble H of models (Uedo & Nakano, 1996):

Mean-Squared-Error(H) = Bias(H)2 + 1
|H|

Variance(H) + IrreducibleError

+
(
1− 1
|H|

)
Covariance(H)

I Therefore:
I elements of the ensemble should have lower bias and variance
I elements of the ensemble should be de-correlated
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Understanding the Second Law

random versus quasi-random

I estimating
∫

θ∈Θ p(y | x , θ) · p(θ|Data) dθ

I the random points clump “statistically”

I the quasi-random points are de-correlated with
little clumping

e.g., determinantal point processes

(like some adversarial training)

e.g., Stein variational gradient descent

I ensemble
∑

θ∈Θ̂ p(y | x , θ) works better using

quasi-random points
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Data Augmentation

from Ahmad, Muhammad and Baik, PLoS ONE 2017

IDEA: classified data is hard to get, so lets generate new data!
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Data Augmentation: MNIST

I technique first used in Zipcode recognition for

the US Post

I images can be rotated, shifted, thinned, etc.
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Data Augmentation: Theory

I We need to identify an invariant in our data we want to hold.

e.g. For text, we could replace synonyms, back-translate, etc.

I We need an algorithm to apply changes to the data reflecting the invariant.

I Probabilistic model, for the augmentation distribution Aug

p(yi | xi , θ) standard data likelihood

p(yi | xi , θ,Aug) =
∫

x ′
p(yi | x ′i , θ)p(x ′|xi ,Aug) dx ′ augmented data likelihood

(the augmentation acts like a convolution)

I Developed as vicinal risk minimisation by Chapelle et al. 2001.
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Data Augmentation: Implementation

I Probabilistic model, for the augmentation distribution Aug

p(yi | xi , θ,Aug) =
∫

x ′
p(yi | x ′i , θ)p(x ′|xi ,Aug) dx ′ augmented data likelihood

≈
∑

x ′∈E(xi )
p(yi | x ′i , θ) ensembled approximation

using ensemble of augmentations E (xi ) generated with p(x ′|xi ,Aug)

I At learning time we train stochastically with one or more augmentations.

I At inference time we should also do augmentations.
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Encoding, Decoding and Embeddings

from “Representation Learning on Graphs: Methods and Applications”, Hamilton, Ying and Leskovec, 2017

Our operational framework: every piece of input structure has two embeddings,

contextual and non-contextual.
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Self-supervision

I to do pre-training, we need a task for learning

I embedding methods (CBOW, Word2Vec, etc.) are an early precursor

I pre-training should build lower-level features useful for subsequent target classes

Self-supervision: an artificial task created for the purposes of learning a network useful

as a pre-trained network.

I called “self” supervised since the task is created automatically
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Self-supervision, cont.

Self-supervision: an artificial task created for pre-training network.
I examples for image recognition:

I color a B/W image
I fill-in missing patches (“image in-painting”)
I object classification from very broad image class

I examples for text classification:
I predict missing words
I forwards and backwards order

I generally, the self-supervision task should be (1) richer and more refined than or

(2) similar to subsequent target tasks
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Pseudo-likelihood and Self-supervision

A pseudo-likelihood (Besag 1975) is an approximation to the joint probability

distribution of a collection of random variables using univariate conditionals:

p(X |M,Θ) =
I∏

i=1
p(xi | x1, ..., xi−1,M,Θ) (product rule of probability)

= p(x1 |M,Θ)p(x2 | x1,M,Θ) · · · p(xI | x1, ..., xI−1,M,Θ)︸ ︷︷ ︸
repeat this term

p̃(X |M,Θ) ≡
I∏

i=1
p(xi |X−i ,M,Θ)︸ ︷︷ ︸

each term is a single prediction

where X−i = X \ {xi}
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Pseudo-likelihood, cont.

p̃(X |M,Θ) ≡
I∏

i=1
p(xi |X−i ,M,Θ) where X−i = X \ {xi}

I it is easily computed because the individual conditionals can usually be easily

marginalised.

I maximising pseudo-likelihood is known to be consistent with maximising likelihood

in the limit of infinite data.

I Pseudo-likelihood can be viewed as a simplified theoretical view of self-supervision.

I But an alternative view is of representation learning.
30 / 42



Self-supervision with Natural Language
I stochastic pseudo-likelihood training on

PLL(W ; θ) =
|W |∑
t=1

log p(wt |W−t , θ)

I may add other prediction objectives about

sentence ordering, etc.

I when the model is multi-layer transformers,

is the basis of the biggest revolution in

NLP history (BERT, XLNET, ...)

figure from Salazar, Liang et al., ACL 2020
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Graph Neural Networks

from “Representation Learning on Graphs: Methods and Applications”, Hamilton, Ying and Leskovec, 2017

I techniques similar to word embeddings have been developed for graphs
I nodes in graphs also have extensive side information

I “hospital patient” node in a graph may have their socio-economic data attached

I pseudo-likelihood style self-supervision applies equally as well
32 / 42



Summary

I Arbitary graph structures with embedded text can be modelled using this

framework.

I Self-supervision works but:
I pays to be clever about the pseudo-likelihood prediction tasks

I These self-supervision encoder-decoder networks form ideal pre-trained networks
for subsequent prediction tasks.
I can be done for written code and comments

33 / 42
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Bayes infer. Using Gibbs Sampling

BUGS, Spiegelhalter, Thomas, Best, Gilks, 1996

Modelling language:
model{

# model priors

beta0 ~ dnorm(0, 0.001)

eta1 ~ dnorm(0, 0.001)

tau ~ dgamma(0.1, 0.1)

sigma <- 1/sqrt(tau)

# data model, linear regression

for( i in 1:n) {

mu[i] <- beta0+ beta1*x[i]

y[i] ~ dnorm(mu[i] , tau)

}

}

I Simple Bayesian linear regression using

Gaussian model ~x = β0 + β1~y .

I All constants, parameters and data are

defined in the language.
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Probabilistic Programming

I used to define probability models for automatic algorithm generation

I provide statistical constructs that users can directly call and use

I predominantly declarative - focus on what needs to be done over how

I can provide support for a plethora of operations
I Gibbs, Hamiltonian Monte Carlo and other Gibbs
I variational algorithms
I black-box optimisation

this section largely drawn from PhD thesis of Dr. Sachith Seneviratne
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Probabilistic Programming: Examples

BUGS uses a directed acyclic graph (DAG) to represent a model (1995)

AutoBayes uses Schema to compose models (1998)

Stan uses Hamiltonian Monte Carlo and targets continuous sampling (2012)

Edward CPU/GPU support with various inference schemes (2016)

Google TensorFlow Probability scale performance across CPUs, GPUs, and TPU,

within TensorFlow

Initially developed independently of Deep Learning, but has similar goals, and similar

techniques, and there is now convergence.

36 / 42
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Example Uses
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Code is Different to Natural Language

I NLP is “natural” and extremely hard to parse, with new or erroneous tokens
appearing
I majority of deep nets treat it like a sequence, not a structure

I code is easy to parse with precise structures, except for
I the language buried in comments,
I and variable names

I we even have auxiliary information like modification time, author, etc.

code has rich structures and auxiliary information as well as embedded text

38 / 42



Pre-training for Code

I use graphs to represent structure of code, model with graph NNs

I harness standard language models for the comments

I harness standard tokenisation models for variable names (WordPiece, etc.)

I develop clever self-supervision tasks:
I predict comments
I predict control flow
I predict expressions

39 / 42



Variants in Probabilistic Programming

Sachith Seneviratne’s PhD thesis, 2020

I high level code generated from models

I variant algorithms (part Gibbs, part variational, different probability formulations)

I variant implementations (different parts in multi-core, GPU)

I automated testing harness to “race” techniques
I ala “Using machine learning to focus iterative optimization,” Agakov, Bonilla, et al.,

Int. Symp. on Code Gen. and Optim., 2006

Needs the code generation and automated testing infrastructure to make work.

40 / 42



Variants in Probabilistic Programming

Sachith Seneviratne’s PhD thesis, 2020

I high level code generated from models

I variant algorithms (part Gibbs, part variational, different probability formulations)

I variant implementations (different parts in multi-core, GPU)

I automated testing harness to “race” techniques
I ala “Using machine learning to focus iterative optimization,” Agakov, Bonilla, et al.,

Int. Symp. on Code Gen. and Optim., 2006

Needs the code generation and automated testing infrastructure to make work.

40 / 42



Another Application

generating clickbait for developers

who can tell me where this image is

grabbed from?
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Questions?
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