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Preliminaries

I links on handout are live
I most items in green link to Wikipedia

pages
I an introduction to concepts, not math
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Clustering Web Pages: Data
slide from Ahmed, MLSS 2014
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Clustering Web Pages: Clusters
slide from Ahmed, MLSS 2014
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Clustering Web Pages: Labels
slide from Ahmed, MLSS 2014
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Clustering Web Pages: Questions

I How do we build the clusters?
I How many clusters (we use K to denote this)?
I How do we get the labels?
I What are the clusters used for?

NB. Amr Ahmed says (roughly) “we have huge amounts of
unlabelled data, so if we can use it we should!”
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Clustering Example for K = 2
I Artificial data example

I Chosen so that the “clusters” are obvious for demonstration
purposes
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Mixture Modelling Example for K = 2
I Example: two normal distributions mixed with ~α = (0.6, 0.4)

Example (1)

µ = 4.3, σ = 0.4, α1 = 0.6

µ = 6.2, σ = 0.5, α2 = 0.4
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Mixture Modelling
I Models data for each feature as a mixture of probability

distributions for i-th data point xi

p(xi |α,Θ) =
K∑

k=1
αkp(xi |θk)

where
I K is the number of classes
I α = (α1, . . . , αK ) are the mixing weights
I Θ = (θ1, . . . ,θK ) are the parameters of the distributions

I Has an explicit probabilistic form=⇒ allows for statistical interpretion
I As a model is usually rather artificial.
I But, it does have efficient algorithms.
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Mixture Modelling, cont.

I Alternatively, expand the sum for the previous formula.
I Introduce a latent class variable ci , and for i-th data point xi

p(xi , ci |α,Θ) = αcip(xi |θci )
where
I ck plays the role of k in the previous sum
I p(ci=k|α) = αk are the priors for ci
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Notation
I data: variables that are observed,

e.g. matrix X with row vectors xi with individual
entries xi,j

I latent variable: is an (always) unobserved
variable attached to data
e.g. matrix C with row vectors ci with individual

entries ci,j
I parameter: a variable not attached to data

but occurs in a probability distribution for the
data
e.g. a matrix Θ with row vectors θi with

individual entries θi,k
I hyper-parameter: a variable not attached to

data, nor is it a parameter, but occurs in a
probability distribution for a parameter or for
another hyper-parameter
e.g. a vector α with individual entries αk

xn,l

cn,l

θn

α

L

N
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Clustering Example Model
I Plot of the Gaussian mixture model density

Example (2)
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Clustering Example for K = 4
I Gaussian mixture artificial data example

Example (2)

α1 = 0.5 α2 = 0.4

α3 = 0.08

α4 = 0.02

I Could you reconstruct the model from so few data points?
I You really need to concurrently learn the mixing weights α!
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Clustering Example for K =∞
I Let’s use infinite number!

(each red cross is one Gaussian component)

from “The Infinite Gaussian Mixture Model,” Rasmussen, NIPS, 2000

I Before the modern era of deep neural nets, even more
artificial!
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The Iris Data

by Nicoguaro [CC BY 4.0], from Wikimedia Commons

Only viewing two fea-
tures at once can make
it hard to see the clus-
ters!
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The Iris Data: Actual Clusters

by Nicoguaro [CC BY 4.0], from Wikimedia Commons

only viewing two fea-
tures at once can make
it hard to see the clus-
ters
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How Many Species of Mosquitoes are
There?

e.g. Given some measurement points about mosquitoes in Asia,
how many species are there?

K=4? K=5? K=6 K=8?
It is reasonable to say there is a “true” K !
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Which Music Genre’s do You Listen to?

(see http://everynoise.com)
Music genre’s are constantly developing: Which ones do you listen

to? What is the chance that a new genre is seen?

The number of music genre’s is forever expanding! Though at a
given time, there is a particular number.
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How Many Words in the English Language
are There?

... lastly, she pictured to herself how this same little sister of hers would, in
the after-time, be herself a grown woman; and how she would keep, through
all her riper years, the simple and loving heart of her childhood: and how she
would gather about her other little children, and make their eyes bright and
eager with many a strange tale, perhaps even with the dream of wonderland
of long ago: ...

e.g. Given 10 gigabytes of English text, how many words are there
in the English language?

K=1,235,791? K=1,719,765? K=2,983,548?

From experience, we know count of distinct words generally grows
logarithmically, or sub-linearly, with size of text.
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Comparative Linguistics: Hierarchical
Clustering

from “The shape and tempo of language evolution”, Greenhill, Atkinson, Meade, Gray, RSB: Biol, 2010

In linguistics and genetics, one sometimes wants trees, not clusters.

20 / 152



Genetics: “Soft” Clustering

Kleinia neriifolia, a form of mountain grass in the
Canary islands

from “Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia,”
Sun and Vargas-Mendoza, Front. Plant Sci., 2017

Each vertical line is a single plant. The colors represent proportions
of the plant in the soft cluster, according to the genetics. The
horizontal layout is roughly the geographical spread.
In genetics and document analysis, clusters may not be “hard”.
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Documents: “Multi-level” Clustering

from “Latent Dirichlet Allocation” Blei, Ng, Jordan JMLR 2003

We can cluster the words while being aware of their place in
documents. This can be related to soft clustering.
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Rich Structures in Data
many opportunities for extensions to clustering or latent variable modelling
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Matrix Data from Documents
Step 1: bag up your documents to get terms and their counts.

Original
news
article:

Women may only account for 11% of all Lok-Sabha
MPs but they fared better when it came to represen-
tation in the Cabinet. Six women were sworn in as
senior ministers on Monday, accounting for 25% of
the Cabinet. They include Swaraj, Gandhi, Najma,
Badal, Uma and Smriti.

Bag of
words:
ordered
0-9A-Za-z

11% 25% Badal Cabinet(2) Gandhi Lok-Sabha MPs
Monday Najma Six Smriti Swaraj They Uma Women
account accounting all and as better but came fared
for(2) in(2) include it may ministers of on only rep-
resentation senior sworn the(2) they to were when
women
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Matrix Data from Documents, cont.
Step 2: line up all the term-count vectors to produce a
document-term matrix.

NB. similarly, tweets, graphs, road traffic, network traffic, gene
data, all sorts of data can be turned into matrices!
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Matrix Factorisation
I Model document collection, image collection, graph, ..., as a

matrix.
I Full data view:

(data).... X ' ΘΦ ....(model)
I Individual row (document, image, node) view, showing i-th

item:
(data item).... xi ' θiΦ ....(model)

I Single entry view, showing j-entry of i-th item:

(data entry).... xi ,j ' θiφ
T
·,j ....(model)

I Variables are:
xi : single datum though some entries can be missing
θi : latent variable, used to generate xi
Φ: model parameters
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Matrix Factorisation, cont.
(data) .... X ' ΘΦ .... (model)

Data X Components Θ Error Models
real valued unconstrained least squares PCA and LSA
non-negative non-negative least squares NMF, learning codebooks
non-neg int. rates cross-entropy Poisson & Neg.Bino. MF
non-neg int.∗ probabilities cross-entropy topic models
real valued independent small ICA
non-neg int. scores shifted PMI GloVe
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Matrix Factorisation Terminology

Statistics: “components”
Classical ML: “topics”
Deep NNs: “embeddings”
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Variants for Images
from Lee & Seung, Nature 1999

Principal Components Analysis

Vector Quantization

Non-negative Matrix Factorisa-
tion

Image/Vision community has moved away from matrix
factorisation methods to deep neural networks.=⇒ The data for images are not in “semi-semantic” tokens.
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Modelling Text with Matrix Factorisation

image−→

Prince, Queen,
Elizabeth, title,
son, ...

school, student,
college, education,
year, ...

John, David,
Michael, Scott,
Paul, ...

and, or, to , from,
with, in, out, ...

text−→

13 1995 accompany and(2) andrew at

boys(2) charles close college day de-

spite diana dr eton first for gayley

harry here housemaster looking old on

on school separation sept stayed the

their(2) they to william(2) with year

Approximate faces/bag-of-words (RHS) with a linear combination
of components (LHS).
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Multi-view Tensor Factorization

from “Bayesian Multi-view Tensor Factorization” Kahn and Kaski, ECML/PKDD 2014

We can work with multiple matrices (with common sides) at once.
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Multi-view Tensor Factorization, cont.

from “Bayesian Multi-view Tensor Factorization” Kahn and Kaski, ECML/PKDD 2014

I Matrices are the simplest case of multi-view tensors and
heterogenous graphs.

I The methods become more complex (e.g., Tucker
decompositions) but share many similarities.
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Examples of Unsupervised Models
I Generative Adversarial Networks (GANs) and Variational

Auto-encoders (VAEs)
I Dimensionality reduction

I some covered with matrix factorisation
I Unsupervised anomaly detection
I Semi-supervised learning
I Generative models
I Segmentation
I Unsupervised natural language learning
I Record linkage, using blocking

These can be very different tasks, and require their own custom
methods.
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Image Segmentation

from

https://en.wikipedia.org/wiki/Image_segmentation

I cluster pixel colours into
16 clusters

I replace each pixel by its
centroid

I very simple and naive
clustering!

34 / 152



Graph Segmentation

from “A Distributed Algorithm for Large-Scale Graph Partitioning,” Rahimian, Payberah and Girdzijauskas,
ACM Trans. AAS, 2015

I graph partitioning “clusters” nodes of a graph
I source of well known NP-complete problems in CS theory
I initially developed for Design Automation (silicon chips) in

Electrical Engineering
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The Model Behind VAEs

I Matrix factorisation with noise:

xi = θiΦ + εi .....(row of matrix factorisation)

I VAE model, and θi is a latent Gaussian vector:

xi = f (θi ,Φ) .....(deep net f (, ) with weights Φ)

I Works well in image, speech and similar signal processing
(which has no “noise” in the classic sense).
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Noise Models for VAEs

I Typical images don’t have noise in the usual sense. They have
semantic-level noise:
I different locations for trees
I different detail in grass/hair/waves/...

I For data with semi-semantic tokens, e.g., VAE-style topic
modelling of documents, people can add a noise term

xi = f (θi ,Φ) + εi

e.g., use a negative binomial to sample an integer value.
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Typical Uses of Clustering

I discovery tool in general data science tasks
I generative model for tasks like anomaly detection
I data exploration/browsing

I there is a long history of using clustering to help present
results of Information Retrieval

I market segmentation
i.e., bucketing users/clients for group actions
I done for targetted advertising, to groups rather than individuals

I See more at Wikipedia.
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Typical Uses of Matrix Factorisation

I dimensionality reduction, reducing much larger matrices in size
I summarisation of relational content: similar role of clustering
I recommender systems
I bioinformatics, analysis of matrix/vector gene data
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Summarising 380 News Articles on Obesity

I blue words: the background topic have non-topical words, is a
prior for all other topics!

I word size: is how characteristic they are for the topic
I whiter words: more frequent in the full collection
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Carrot2 Circles
summarising document collections with hierarchical clustering

summary of re-
sults for query
“data mining”

from https://carrotsearch.com/circles/
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Historical Context
Early clustering algorithms like k-means were developed for these guys
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Distance-based Models

from https://apandre.wordpress.com/visible-data/cluster-analysis/

I set up a cost function to maximise inter-cluster distances and
minimise intra-cluster distances

I in general case need to compute N2 distances!
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Distance-based Models

modified from https://apandre.wordpress.com/visible-data/cluster-analysis/

I k-means was developed to make this O(KN) instead
I give each cluster a centroid (marked with “X”)
I change the cost function to measure distance between data

and centroid
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K-means Definition
from Wikipedia, LaTeX and all!

K-means Clustering
Given a set of observations (x1, x2, . . . , xN), where each
observation is a d-dimensional, k-means clustering aims to
partition the N observations into K (≤N) sets
S = {S1,S2, . . . ,SK} so as to minimize the within-cluster sum of
squares (WCSS, i.e. variance).
Formally, the objective is to find:

WCSS = arg min
S

K∑
k=1

∑
x∈Sk

|x− µk|2 = arg min
S

K∑
k=1
|Sk |Var(Sk)

where µk is the mean (also called a centroid) of points in Sk .

I defined as finding a partition of the data
I algorithm recomputes the µk then S iteratively
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K-means is Double-Plus Good!
These guys are telling you k-means is the goto method for clustering
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K-means Algorithm

from https://apandre.wordpress.com/visible-data/cluster-analysis/

I an iterative algorithm, “repeat until no change”
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K-means and Voronoi Polygons

from https://plot.ly/ MariaKu/95.embed
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K-means Computation

Some reflection on definition shows it is a greedy local search
algorithm (i.e., one dimension at a time) on the space of centroids
and assignments:
I each step prior to convergence decreases the WCSS
I on convergence the space is partitioned into Voronoi polygons

with the centroids as the points
I and like all complex search problems

I there is no global (best) solution
I is sensitive to initialisation
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K-means on Mixture Models

I some data will be assigned to the wrong cluster, causing the
centroid estimates to be biased!

I cluster 1 gains some outliers from clusters 3 & 4!
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K-means: Problems with Variance

see “Understand drawbacks of K-means” on Stackexchange

I Both clusters have 500 points but yellow has smaller variance.
I The Voronoi polygons thus don’t match: some points wrongly

assigned, so centroids will be biased away from the midline.
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K-means Issues
I user needs to define distances and means (of points, for

centroids)
I how would you do this for text data?

I user needs to specify K
I use the so-called elbow method

I specialised data structures and fast algorithms exist
I fabulous topic for computer scientists
I found in most scalable data science packages
I you can implement it natively in some SQLs!

I has a simple probabilistic interpretation (we show later)
I that proves it can yield biased estimates

I has no notion of cluster proportions
I suffers with different variance or non-spherical clusters
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Basic Hierarchical Algorithms
I also called connectivity based

AKA numerical taxonomy
e.g. the hierarchies in linguistics, biology and genetics

I modify the K-means cost function
I greedily build a hierarchy by either splitting or agglomerating

parts of the existing partition
I no K needed!

I again, brought to you by
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Wasserstein Distance
from blog of Vincent Herrmann, “Wasserstein GAN”, 2017

What is the distance between these two distributions?

Wasserstein “earth movers” distance: whats the minimum total
distance travelled to lug probability from one to the other?
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Wasserstein Distance, cont.

I for discrete distributions it is a “simple” optimisation problem
I for real distributions, complex and expensive to compute
I a very intuitive distance and works exceptionally well in

practice for clustering
I suits hierarchical and multi-level clustering well

NB. earlier, theoreticians also tried Bregman divergence, but these
didn’t prove as good
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Generative Models
I Give probabilistic prescription for generating data:

Gaussian mixture model: to generate vector xi :
1. generate class ci according to probability vector

α,
2. generate data xi according to Gaussian with

parameters θci
Matrix factorisation: to generate new row xi

1. generate latent component for a row θi
2. compute mean vector θiΦ from parameters Φ
3. add noise, to get row xi = θiΦ + εi

I Are explicitly/implicitly probability models that generates data
according to proposed model probabilities (frequencies).

I Are inherently testable:
I you can compare observed frequencies in data to probabilities

predicted by the model, via the likelihood
I basis of the maximum likelihood principle
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Calibrating Models
I Good probability models should be well calibrated.
I probabilities predicted by the model should be close to

observed frequencies in data
I Example shown for Boolean classification error:

from https://scikit-learn.org/stable/modules/calibration.html
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Calibration of Models

I A calibrated model deals well with many non-standard
prediction problems, e.g.,
I imbalanced classes
I unequal costs

I If you train your classification model using a cost function
that is a proper scoring rule, then it will give you a calibrated
model.
I log probability and Brier score are proper scoring rules
I prediction errors is not a proper scoring rule

I In the calibration plot previously:
I only Logistic is trained with a proper scoring function
I naive Bayes trained on log probability for generative model,

not a proper scoring function for predictive model
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Gaussian Mixture Models (GMMs)
I Plot of a Gaussian mixture model density

Example (2)

I As a mixture model:

p(xi |α,Θ) =
K∑

k=1
αkp(xi |θk)

I Equivalently, as a latent variable model:

p(xi , ci |α,Θ) = αcip(xi |θci )
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GMMs: Algorithms
Parameters are proportions α and Gaussian parameters θk for each
cluster k. Optionally may include latents c.
I greedy local search for c, α, Θ to minimise

cost =
∑
i

log 1
p(xi , ci |α,Θ)

I Gibbs sampling on c, α, Θ from

probability = p(α)p(Θ)
∏
i
p(xi , ci |α,Θ)

I gradient-based search for α, Θ to minimise

cost =
∑
i

log 1
p(xi |α,Θ)

I and more ...
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Model-based Clustering

I The staticians refer to generative clustering models as
model-based clustering, or distribution-based clustering.

I The pioneer in this area was Adrian Raftery.
I The framework allows the full machinery of applied statistics

to be used.
I It also addresses a lot of the problems CS theoreticians have

with definitions of clustering:
e.g. a clustering algorithm returns a partition
e.g. a clustering model should return a distribution over partitions
e.g. from which one could derive things like x10 and x27 are in the

same cluster with probability 0.76
e.g. what constitutes a cluster can be customized based on the

model families used
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Reminder: Local Search
Graph colouring: try to find a colouring so no
two neighbours have the same colour.

Then conflicts(x) is the number of neighbours
of x with the same colour: conflicts(k) = 0,
conflicts(t) = 1.

Local Search for Graph Colouring

Repeat until bored.
1. Choose dimension k randomly or by cycling

through.
2. Update xk to a colour such that conflicts(xk) is

locally minimum.
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Probabilistic Local Search, example

The Grand Canyon (from Wikipedia.org).

To find the bottom (1) mostly walk down hill (2) but sometimes
follow flat ridges (3) and maybe occasionally go up hill to get out
of a local valley.
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Probabilistic Local Search for Graph
Colouring

Update s using p(s|b, toc) where the
distribution favours less conflicts.
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Probabilistic Local Search for Graph
Colouring

Update b using p(b|s, toc, d) where the
distribution favours less conflicts.
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Probabilistic Local Search for Graph
Colouring

Update toc using p(toc|t, lc, b, x , d)
where the distribution favours less con-
flicts.
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Probabilistic Local Search, example

Here we have a 100 variable 3SAT problem done with “Gibbs”
search. So we sample variables at each stage instead of assigning
to the value maximising local probability.
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Augmentation: Adding a Variable

Add a new variable (conditioned on
some others).

Carefully designed to make sampling of
the remainder easier.

On the left, add p(U|t, lc, toc) to the
distribution to get a new joint P(U,X ).
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Collapsing: Removing a Variable

Marginalise out a variable.

Carefully designed to make sampling of
the remainder easier.

On the left, marginalising out s from X
induces a new arc between lc and b to
get a new joint P(X − {s}).
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General Probabilistic Local Search
Probabilistic Local Search

Input: X = X0, conditional distributions
Repeat until bored.

1. Choose a dimension k.
2. Update xk by xk ∼ p(xk |X/{xk})

I Only needs to compute/sample conditional probabilities
p(xk |X/{xk}).

I So do not need the normalising constant for p(X ).
I Which is the hardest thing to compute for many models!

I If there is sparse undirected graph behind the model, each
computation p(xk |X/{xk}) will be sparse and thus more
efficient.
I hard for many deep neural networks!
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Gibbs Sampling

Gibbs Sampling
Probabilistic local search is called Gibbs sampling.

I The easiest and most widely used MCMC method.
I Collapsing and augmentation can make it really efficient.
I Software packages exist for doing it from model specifications:

I BUGS
I Just Another Gibbs Sampler (JAGS)

I These have revolutionised the application of statistics.
I With Hogwild Gibbs sampling can be made distributed, and

has been ported to GPUs.
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GMMs: Greedy Local Search
Local search for c, α, Θ to minimise

cost =
∑
i

log 1
p(xi , ci |α,Θ) =

∑
i

log
( 1
αcip(xi |θci )

)

1. randomly initialise c (a partition to define clusters)
2. repeat until convergence:

2.1 update α by minimising

cost =
∑
i

log 1
αci

+ constant

2.2 for each k update θk by minimising

cost =
∑
x∈Sk

log 1
p(x|θk) + constant

2.3 for each i , update ci by maximising p(xi , ci |α,Θ), then
recompute the partition S
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GMMs: Greedy Local Search, cont.
As before Sk is data assigned to cluster k, { xi : ci ≡ k}.

Local search for optimal c, α, Θ of cost:
1. randomly initialise c (a partition to define clusters)
2. repeat until convergence:

2.1 update α, Θ using data in the cluster partitions

αk ← |Sk |
N

θk ← Gaussian-MLE(Sk)

2.2 for each i , update i to the most probable cluster,

ci ← argmax
k

(αkp(xi |θk))

then recompute the partition S

NB. this is an extension of k-means, but includes effects of cluster
proportions α, and uses probability measures, not distance.

73 / 152



GMMs: Gibbs sampling
Gibbs sampling of c, α, Θ via

probability = p(α)p(Θ)
∏
i

(αcip(xi |θci ))

1. randomly initialise c (a partition to define clusters)
2. repeat for some time:

2.1 update α by sampling proportionally to

probability ∝ p(α)
∏
i
αci

2.2 for each k update θk by sampling proportionally to

probability ∝ p(Θ)
∏

x∈Sk

p(x|θk)

2.3 for each i , update ci by sampling proportionally to
p(xi , ci |α,Θ), then recompute the partition S

NB. This is a stochastic version of the previous greedy algorithm.
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GMMs: Gibbs sampling, cont.

Here is an incomplete version of the Gibbs sampler:
I requires appropriate conjugate priors,
I haven’t given parameter values for sampling.

1. randomly initialise c (a partition to define clusters)
2. repeat for some time:

2.1 update α by sampling from the posterior Dirichlet
2.2 for each k update θk by sampling from the posterior Gaussian
2.3 for each i , update ci = k by sampling proportionally to

αkp(xi |θk)
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GMMs: Gradient-based Search
Gradient-based search for α, Θ on

cost =
∑
i

log 1
p(xi |α,Θ) = −

∑
i

log
(∑

k
αkp(xi |θk)

)

∂ cost
∂ αk

= −
∑
i

p(xi |θk)
p(xi |α,Θ)

= −1
αk

∑
i
p(ci=k|xi ,α,Θ)

∂ cost
∂ θk

=
∑
i
p(ci=k|xi ,α,Θ)

∂ log 1
p(xi |θk)

∂ θk

It appears we have regular looking cost function derivatives that
have been weighted by p(ci=k|xi ,α,Θ).
If these weights are treated as constants, the solutions are easy.
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GMMs: Averaging Gibbs Sampling
I The Gibbs step for ci : sample ci = k proportionally to

q(ci |xi) = p(ci |xi ,α,Θ)

I Make a cost function the has “fractional” samples given by
proportions q(ci=k|xi).

I This artificial cost function is:

cost-q =
∑
i

∑
k

q(ci=k|xi) log 1
αci=kp(xi |θk)

This moves the sum outside of the log!
I We can formalise this operation using the

expectation–maximization algorithm (EM), or alternatively the
variational methods such as the mean field approximation.

NB. variational method commonly used with deep neural networks.
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Variational Method: Framework
I The problem considered has a model with latent data c.
I Have a model p(xi , ci |Θ), where only xi is observed.

I clustering, latent Dirichlet allocation, missing values, ...
I We will develop an approximate conditional distribution for

the latent c
q(ci |xi) ≈ p(ci |xi ,Θ)

I The aim is to use the approximate distribution q() to simplify
the log probability.

I However, q() will need to be repeatedly re-estimated as Θ
changes.

I Called “variational” because calculus of variations is, in
principle, needed to work the solutions.
I in practice, you just need differentials (like ∂q()) and some

common sense math.
i.e. I could teach you in 10 minutes
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The KL Variational Setup
Consider the following equality:

log p(x,Θ)−
∑
i
KL (q(ci |xi)|p(ci |xi ,Θ))

= Eq()
[
log p(x, c,Θ)

]
+
∑
i
I(q(ci |xi))

I The two lines are equal so can work with either one.
I Is true for any distribution q(). So we can change it to help

us, as needed.
I From this we also get the evidence lower bound (ELBO)

log p(x,Θ) ≥ Eq()
[
log p(x, c,Θ)

]
+
∑
i
I(q(ci |xi))

which becomes an equality for the EM algorithm.
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The KL Variational Setup, cont.

Consider the following equality:
log p(x,Θ)−

∑
i
KL (q(ci |xi)|p(ci |xi ,Θ))

= Eq()
[
log p(x, c,Θ)

]
+
∑
i
I(q(ci |xi))

I Maximise the first line w.r.t. q()
I So minimise just the KL() terms.
I So build an approximation q(ci |xi) = p(ci |xi ,Θ).

I not possible for more complex models and deep neural
networks, so they usually just seek to get q(ci |xi) closer under
KL()
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The KL Variational Setup, cont.

Consider the following equality:
log p(x,Θ)−

∑
i
KL (q(ci |xi)|p(ci |xi ,Θ))

= Eq()
[
log p(x, c,Θ)

]
+
∑
i
I(q(ci |xi))

I Maximise the second line w.r.t. the Θ.
I So ignore the I() terms.
I So use the approximation to more simply estimate Θ from a

fractional version of the data likelihood.
i.e. Eq()

[
log p(x, c,Θ)

]
is simpler to fit than log p(x,Θ) because

the sum inside the log disappears
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Use on a Mixture Model
The KL variational method for a mixture model reduces to:
1. Initialise α, Θ somehow.
2. Repeat until convergence.

2.1 Update the q() approximations (as vectors)

q(ci |xi)← p(ci |xi , α,Θ)

2.2 Fit α, Θ to minimise the score, with q() fixed:

cost-q =
∑
i

∑
k

q(ci |xi) log 1
αkp(xi |θk)

I We are using fractional data, as suggested previously!
I This moves the sum out from inside of the log.
I In our case, this converges on a local maxima.
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Use on the GMM
The KL variational method for a GMM reduces to:
1. randomly initialise α, Θ
2. repeat until convergence.

2.1 update the q() approximations (as vectors)

q(ci |xi)← p(ci |xi , α,Θ)

2.2 update α, Θ using fractional data, the q():

αk ←
∑

i q(ci=k|xi)
N

θk ← Gaussian-Weighted-MLE ({xi , q(ci=k|xi) : i = 1, . . . ,N})

I This is a fractional version of the k-means style algorithm.
I It also represents an averaging of the Gibbs style algorithm.
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Compare with the Greedy Algorithm

1. randomly initialise c (a partition to define clusters)
2. repeat until convergence:

2.1 update α, Θ using data in the cluster partitions

αk ← |Sk |
N

θk ← Gaussian-MLE(Sk)

2.2 for each i , update i to the most probable cluster,

ci ← argmax
k

p(ci |xi , α,Θ)

then recompute the partition S
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The KL Var. Method on Distributions
Exponential family models: there are many, including:

I KL var. method works well on arbitrary networks of these.
I In most cases has closed form solutions to the algorithm steps.
I And is approximately a Newton-Raphson update for these.
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The KL Variational Properties

I For a mixture model, the variational method becomes
equivalent to the expectation–maximization (EM) algorithm.

I A much more general theory exists for arbitary network
models. A very broad family!

I In neural networks, the update to Θ is done stochastically and
q() never optimised.
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Automating Statistical Inference

from Buntine JAIR 1994

Applying Gibbs and the KL Variational method, once you now the
details, is routine and we are one step away from automating a lot
of it.
I initial efforts like Stan from Columbia underway
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Cluster Indices: Is This ...
slide modified from Ahmed, MLSS 2014
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Cluster Indices: The Same As This ...
slide modified from Ahmed, MLSS 2014
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Cluster Indices: Or This ...
slide modified from Ahmed, MLSS 2014
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Label Switching

I Clusters do not come with labels.
I Constructing linguistic labels can be challenging.
I After clustering, cluster details are usually stored in vectors or

structures and simply indexed, maybe as 1,2,3,...
I In principle, we can randomly permute the order of the

clusters (or change cluster indices), and most cost functions
or cluster probabilities will be the same.
I WCSS is invariant if we switch cluster indices.

I This is called the label switching problem.
I confusingly named ... should be the “cluster index switching

problem”
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Partitions
I The label switching problem disappears if instead of searching

I the space of clustering assignments: c, mapping data
indices (1,...,N) to a cluster indices (1,...,K ),

I we search the space of partitions: partition the set {1, ...,N}
into K separate sets.

I Usually, we assume a partition has no empty sets.
I Below, for N = 5 shows different partitions for K = 1, K = 2,

etc.
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Partitions, cont.
I For fixed K we usually ignore the theory of partitions and

search in the space of clustering assignments.
I If we make K unknown, we need to be aware of the theory of

distributions over partitions.
I Developed extensively by Pitman from 1995 onwards

“exchangeable random partitions”, for instance:
I Pitman-Yor process (PYP)
I Dirichlet process (DP) which is an instance of the PYP

I Similar theory applies to trees (for hierarchical clustering).
I For a more readable account see

“A Bayesian View of the Poisson-Dirichlet Process” by
Buntine and Hutter, 2010.

Fun facts about combinatorics of partitions:
I The total number of partitions of an N-element set is the Bell number Bn : B5 = 52, B6 = 203, ...
I The number of partitions of an N-element set into exactly K nonempty parts is the

Stirling number of the second kind, SKN . e.g., S310 = 511, S810 = 750, S1N = 1, SNN = 1.
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Known Finite Partitions with Unknown K

Mixture Model:

p(xi |α,Θ) =
K∑

k=1
αkp(xi |θk)

I In the “how many species of mosquitoes” case, place a
Dirichlet distribution on α and a distribution on K .

I We want to estimate α for a few different K .
I Standard parametric and exponential family analysis.
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3-D Dirichlet Plots

NB. Dirichlets have an inverse variance parameter α and a mean.
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Infinite Partitions with Finite N
Infinite Mixture Model:

p(xi |α,Θ) =
∞∑
k=1

αkp(xi |θk)

I In the “how many music genres” case, make K =∞ and
place a non-parametric distribution on α.
e.g. Pitman-Yor process or Dirichlet process

I We want to estimate the infinite vector α.
I The Dirichlet process is an infinite counterpart to the

Dirichlet.
I Standard non-parametric analysis largely reduces to

parametric inference.
I moderately efficient methods exist, even in the hierarchical

case, see Buntine et al. and Mingyuan Zhou et al.
I Warning: you need to ignore a lot of the ML literature on this,

because the Chinese restaurant process doesn’t seem to be
useful for any situation, including hierarchical models!
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Infinite K is Finite for Fixed N
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PYP: posterior probability on K given N = 1000 and different d , α.
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Zipfian Probabilities

I we count the different words types in a large collection
I if we order words by rank, from most frequent to least

frequent,
I then the proportion for words drops dramatically
I in fact log(probability(word)) roughly drops linearly
I the PYP generates Zipfian like probability vectors
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Cost Functions 101

I we train a model with parameters Θ using training set
{x1, . . . , xN}

I have a cost or loss function based on each data point x and
the model, l(x,Θ)

e.g. squared loss, ε-insensitive loss, Brier score, absolute error
I one then uses cost on the data, cost =

∑N
i=1 l(xi ,Θ)

I cost functions are schizophrenic:
utility based: for real decisions measured in units of dollars,

lives lost, or other measure of true worth
score based: e.g., proper scoring rule to get a calibrated

classification model
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Cost Functions 101, cont.
I can add a regularizing term to penalize “complex” models

e.g. in regression estimating yi with xTθ, ridge regression using a
loss of squared error with L2 regularization has cost

N∑
i=1

(yi − xT
i θ)2 + λL2(θ)

whereas lasso regression uses L1
I both are often poor in the general case of regression
I Gaussian processes effectively allow the function shape to be

considered as well
I Bayesian estimation roughly corresponds to these with

negative log probability:∑
i

log 1
p(yi |xi ,θ) + log 1

p(θ)
I Generally one has a cost

∑
i l(xi ,Θ) + λL(Θ)

I trading complex model against loss on data
I λ hard to know unless one is Bayesian, so use cross validation

or a hold out set to estimate it
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Bayesian Theory 101
Bayes Theorem for I.I.D. data is:

p(θ|x1, . . . , xN) = p(θ)
∏N

i=1 p(xi |θ)
p(x1, . . . , xN)

p(x1, . . . , xN) =
∫

p(θ)
N∏
i=1

p(xi |θ) dθ

I probabilities like p(xi |θ) are testable, and correspond to
predictions for data frequencies

I probabilities like p(θ) are untestable, and correspond to
beliefs, and can be considered subjective

I since they are beliefs about θ, they are beliefs about
frequencies, said to Bayesian

I Why do we use them?
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Bayesian Theory TL;DR

I there are strong theoretical justifications for using
Bayesian methods

I but they ignore computational and multi-agent issues
I of the kind that applied ML people well understand!

I and they don’t say you must *use* Bayesian methods
I but you should be reasonable consistent with them

I in practice we do hybrids, compromises, and variations,
i.e., “applied Bayesian”
I like regularisation with cross validation
I like ensembling
I so-called “empirical Bayes”
I MDL and MML approaches
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Bayesian Justifications (skip)
Kolmogorov’s Axioms: justify probability as frequency

I based on simple counting arguments
Cox’s Axioms: justify that probability as belief should be handled

the same as probability as frequency
I based on simple properties of belief

Dutch Books: justify that probability as belief should be handled
the same as probability as frequency
I based on gambling against a person who doesn’t

have underlying beliefs
von Neumann-Morgenstern Axioms: justify specifying costs and

making decisions based on minimum expected cost
I based on comparing alternative rewards
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But, Hidden Assumptions (skip)

Using Bayesian probabilities makes the following implicit
assumptions:
I you have unlimited computational power;
I you are a single agent seeking to optimize performance in a

directly measurable sense;
I you are using a model family that includes a sufficiently close

approximation to the “truth.”
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But, Hidden Assumptions (skip)

These become dangerous when:
I seeking to model “objective” reasoning;
I using simple linear models for everything;
I have a complex model you cannot justify priors for;
I seeking to test a new drug for safety before to public release;
I using an old CPU with low power and memory.
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Model Selection

TBD
I the evidence
I AIC, BIC as crude approximations
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Encoding Methods (skip)
Minimum Description Length (MDL): formalised as NML,

assumes a log probability utility function and does a
prior-free minimax Bayesian approach with a specific
coding intepretation as a 2-part code
I see “An MDL framework for data clustering” by

Kontkanen, Myllymäki, et al. 2005
Minimum Message Length (MML): a Bayesian-like method that

sets up a 3-part code code length for the parameter
space (sometimes corresponds to using a Jeffreys
prior)
I see “Unsupervised learning using MML” by

Oliver, Baxter and Wallace, 1996.
Popular MDL: a separate method based loosely on the notion of

coding hypotheses and then the data

Different ways of motivating and ideating a cost function.
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Cost Functions and Latent Variables

I The problem considered has a model with latent data c.
I Have a model p(xi , ci |Θ), where only xi is observed.

I clustering, latent Dirichlet allocation, missing values, ...
I Naive approach: cost =

∑N
i=1 l(xi , ci ,Θ)

I this is the simplest approach which causes estimation bias
I can be viewed as over-fitting: room to optimise latent ci

I Using a generative probability model and a well designed
algorithm solves the problem:
I sample c with MCMC such as Gibbs
I use variational methods
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Neural Networks and Latent Variables

modified from “Intro to VAEs” Kingma and Welling 2019, p.23

I for gradient descent, one would like to marginalise out z and
compute ∂ log p(f |x,φ)

∂φ

I the existence of latent z blocks any derivative of f from being
computed past z
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NNs and Latent Vars, cont.
Derivatives with Latent Variables
The following identity holds:

∂ log p(f |x,φ)
∂φ

=
∫

p(z |f , y ,Θ)∂ log p(z |x,φ)
∂φ

dz .

I need a Gibbs-like step to sample z via p(z |f , x,φ)
I not currently done with neural nets, but could be

I so technique becomes

1. sample z ∼ p(z |f , x,φ)

2. use the stochastic approximation
∂ log p(f |x,φ)

∂φ ≈ ∂ log p(z|x,φ)
∂φ
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NNs and Reparameterisation Trick

from “Intro to VAEs” Kingma and Welling 2019, p.23

A latent variable blocks differentiation.
But we can isolate the randomness into a leaf to reinstate
differentiation.
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NNs and Reparameterisation Trick, cont.
Reparameterisation Trick
Let gx,φ(·) be an invertible function. A sample from the
distribution p(z |x,φ) is equivalent to the function evaluation
z = gx,φ(ε) where ε has the distribution p(ε) if and only if

p(z |x,φ) = p(ε=g−1x,φ(z))
dg−1x,φ(z)

dz .

This limits the form used, but the recipe is simple.
1. select any real valued parameter-free distribution p(ε)

I Kingma and Welling used a standard normal distribution.
2. select any invertible function gx,φ(ε)
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NNs and Stochastic Weights

modified from “Intro to VAEs” Kingma and Welling 2019, p.23

A large stochastic vector of weights requires a lot of sampling.
But we can shift the randomness into the single real z .
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NNs and Stochastic Weights, cont.
Eliminating Stochastic Weights
Let z = φTx be a node in a network where each φi is IID. Then
the characteristic function of z , ψz(t) is given by

ψz(t) =
∏
i
ψφi (txi)

where ψφi (t) is the characteristic function of φi .

Suitable distributions are rare.
While you need to understand characteristic functions to apply
this, for our purposes, the theorem yields
I φi ∼ N(µi , σ2i ) then z ∼ N

(∑
i µixi ,

∑
i σ

2
i x2i

)
I same for the Cauchy (which can be derived from a Gaussian)
I φi ∼ gamma(λi) then z ∼ gamma (

∑
i λixi)
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Evaluation: Running on a Test Set I

Step I: Get test set with given labels and build clusters without the
labels:

I Have a set of N data with known single labels and convert
to indices 1, ..., L, to get l1, ..., lN .
I each datum has a single label,
I labels should be “characteristic” of the data

I Cluster data (but ignoring labels) into K clusters numbered
1, 2, ...,K , represented as cluster assignments c1, ..., cN .
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Evaluation: Running on a Test Set II

Step 2: Evaluate by comparing labels to clusters:

I How do we match labels 1, ..., L to clusters 1, 2, ...,K?
I remember, both need to be treated as partitions
I is a variation of the Hungarian assignment problem

Purity: run Hungarian assignment to get best matches for labels and
clusters, then compute how pure each cluster is in terms of its
label.

Entropy: Computing I(l |c) gives how informative the clusters are about
the labels
I treating both variables as partitions
I without requiring fixed assignments between clusters and labels
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Evaluating Generative Models
I Have a training set of N data, x1, . . . , xN , and a test set of M

data, x ′1, . . . , x ′M ,
I Build generative model p(x|Θ) from the data.
I Compute average log probability on the test set with the

latent variables marginalised out:

score = 1
M

M∑
i=1

log p(x ′i |Θ)

I A challenge! See “Estimating Likelihoods for Topic Models”
Buntine 2009.

I If data is multi-level, for instance each datum is a sequence of
D tokens, so xi = (xi ,1, xi ,2, . . . , xi ,Di ), standardise to a per
token score for a single test datum

perplexityi = e
1
D log 1

p(x′
i |Θ) = 1

(p(x ′i |Θ))
1
D

I These scores are not inherently related to any real task.
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Justifications in Machine Learning
Justifications for ML methods fall into 3 camps:
I because we can

I because we should

I because we must

Note to Wray: add suitable pictures
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Justifications in Machine Learning, cont.
Justifications for ML methods fall into 3 camps:
Because we can: expediency from making huge assumptions or
taking huge short cuts:
I fast algorithms (k-means),
I simple models (mixture of Gaussians),
I most early statistical methods (PCA)

Because we should: reasonable arguments show the method is
appropriate:
I deep neural networks applied to complex problems like vision,

natural language and speech
I when doing summarisation, not statistical inference, methods

change
Because we must: some theory claims its the “right thing” to do
I early statistical methods in specific contexts
I following Bayesian-like practices in specific contexts

e.g. regularisation
I Bayesian theory does not say you have to be Bayesian
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Levels of Complexity in Modelling
Parametric: Exponential family and related known distributions:

Gaussians, negative binomomials. pre-1980’s
I well understood statistical inference algorithms

Non-parametric: Parametric models but with infinite vectors (e.g.,
Gaussian process, beta process, etc.) 1995-2000s
I non-parametric extensions of well understood

statistical inference algorithms
Latent variables and hierarchical models: Combinations of the

above with decomposable models. 1990s-2000s
I iterative approximation algorithms

Non-linear and non-exponential family: neural networks of various
forms 2000s on
I brute force inference algorithms

General hierarchical: Combinations of all the above. 2020 on
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Tutorials
Good introductory tutorials.
I Very basic tutorials I give less mathematical students from:

StatQuest: K-means clustering and hierarchical clustering
I Good (generally basic) tutorial articles in blog form

Medium.com
I Amr Ahmed’s MLSS 2014 tutorial on parallelising LDA, big

data and inference, part 1 part 2
More advanced theory
I Peter Orbanz’s Lecture Notes on Bayesian Nonparametrics,

with PDF booklet from MLSS 2012
I a good intro. for ML folks; ask me if you want more statistics

I Spectral clustering is based around using eigenvectors:
Short Introduction to Spectral Clustering, from Hein and von
Luxburg, MLSS 2007

I “A Tutorial on NMF with Applications ...,” Essid and Ozerov,
ICME, 2014
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Community Research Styles in ML
from Caitlin Doogan’s PhD, 2019

Theoretical: concerned with proving theorems.
Methodological: concerned with general community philosophies

like Deep Neural Networks, Bayesian, etc.
Empirical: concerned algorithms and their performance, often on

standard test benchmarks
Applications: concerned with specific problems in practice

I there is general drift from one to another
I each community has its own special challenges and oftentimes

look down on the others!
I each community has its own special publication styles
I see tutorial by Eamonn Keogh (from empirical school)

How to Do Good Data Mining Research and Get it Published
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Brief Guide to the Literature

ICML+NIPS: highbrow machine learning with less empirical work,
mainly methodological

SIGKDD+ICDM: machine learning with more empirical work and
some applications, mainly empirical

ICLR: SOTA deep neural nets, mainly methodological
various NLP + Vision + IR: diversity and depth in machine

learning, empirical and applications and
methodological
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Example: The Hierarchical Dirichlet
Process (HDP)
Teh, Jordan, Beal & Blei, 2006 (3000+ citations)
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Framing the Problem

I Data: may have real/positive/integer/Boolean data, or rows
may be normalised

I Algorithm: there are distributed, approximate/accurate, fast,
a Python/Java/R variants of algorithms

I Internet: there are lots of poor algorithms and papers
I Effects: there are lots of sophisticated augmentations:

I dealing with missing data
I dealing with side information
I dealing with sparse/short documents
I dealing with multiple matrices
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Latent Dirichlet Allocation, Description

N, K number of documents, number of topics
xi list of (observed) words in document i , data
ci list of topics for words in document i , latent variables
θi topic proportions for document i , a latent variable

φk word proportions for topic k, parameters
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Starting with LDA

Basic LDA topic modelling with no effects (α and β are constants):

φk ∼ Dirichlet(β1) for k = 1, ...,K
θi ∼ Dirichlet(α1) for i = 1, ...,N
xi ∼ multinomial (θiΦ) for i = 1, ...,N

NB. c has been marginalised out by the product θiΦ
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Improving Topic Models: I

Add priors to Θ and Φ (γ and ψ are constants):

β ∼ Pitman-Yor(ψ1)
φk ∼ Dirichlet(β) for k = 1, ...,K
α ∼ Dirichlet(γ1)
θi ∼ Dirichlet(α) for i = 1, ...,N
xi ∼ multinomial (θiΦ) for i = 1, ...,N
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Improving Topic Models: I

Different topics should have different base rates.

I Consider the following topics in news about “Obesity”:

I say have obesity not health need problem issue
−→ 10.7% of words

I christ religious faith jewish bless wesleyan
−→ 0.08% of words

I Standard LDA says these two should be equally likely.
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Improving Topic Models: I

Different topics should have different base rates.
I we make priors on the topic proportions asymmetric,
I done by Teh, Jordan, Beal and Blei 2006

I spawned Hierarchical Dirichlet processes (HDP) and
nested/hierarchical Chinese restaurants
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Improving Topic Models: I
Different topics should have different base rates.
I we make priors on the topic proportions asymmetric,
I done by Teh, Jordan, Beal and Blei 2006

I spawned Hierarchical Dirichlet processes (HDP) and
nested/hierarchical Chinese restaurants

I done by Wallach, Mimno, McCallum 2009
I now available in the Mallet topic modelling system

I considerable theory and algorithms, 2009-2012
I noteable mention: Bryant and Sudderth, 2012
I but some implementations gave poor results

I done by Buntine and Mishra, KDD, 2014
I does HDP efficiently with a fast Gibbs sampler
I multi-core, great results
I Gibbs sampling beats variational inference!
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Yields High Fidelity Topics

Examples from 100 topics about “Obesity in the ABC news” from
2003-2012, from 600 news articles of average length 150 words:

rank words
5 4.57% study researcher finding journal publish twice university
14 1.54% teenager boy child adults parent youngster bauer school-child
22 0.86% doctor ambulance hospital psychiatric general-practitioner staff
42 0.43% soft-drink instant soda carbonated fizzy beverages candy sugary
78 0.18% olympics time second olympic pool win team freestyle gold
91 0.11% colonel lieutenant-general afghanistan rifle stirling mission
95 0.10% dialysis end-stage dementia kidney-disease kidney abdominal

I 100 topics for 600 documents
I most are on coherent subjects
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Improving Topic Models: II

Make the generation of xi more robust:

β ∼ Pitman-Yor(ψ1)
φk ∼ Dirichlet(β) for k = 1, ...,K
α ∼ Dirichlet(γ1)
θi ∼ Dirichlet(α) for i = 1, ...,N
xi ∼ Dirichlet-multinomial (θiΦ) for i = 1, ...,N
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Improving Topic Models: II
Words in text are bursty: they appear in small bursts.
Original news article:
Women may only account for 11% of all Lok-Sabha

MPs but they fared better when it came to represen-

tation in the Cabinet. Six women were sworn in as

senior ministers on Monday, accounting for 25% of the

Cabinet. ...

Bag of words:
11% 25% Cabinet(2) Lok-Sabha MPs Monday Six They

Women account accounting all and as better but came

fared for(2) in(2) it may ministers of on only represen-

tation senior sworn the(2) to were when women

I effect is called burstiness
I first modelled by Doyle and Elkan 2009, but intolerably slow
I done by Buntine and Mishra, KDD, 2014 using HDPs

I only 25% (or so) penalty in memory and time
I huge improvement in perplexity, and smaller one in coherence
I but loss of fidelity (“fine” low probability topics)

I so we usually don’t use
I Also used in Poisson matrix factorisation by Mingyuan Zhou

using negative binomials instead of Poisson.
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Improving Topic Models: III

Regress word features L onto topic prior βk to customize it for
each topic.

βk ∼ Gamma-Regression(Λ,L)
φk ∼ Dirichlet(βk) for k = 1, ...,K
α ∼ Dirichlet(γ1)
θi ∼ Dirichlet(α) for i = 1, ...,N
xi ∼ multinomial (θiΦ) for i = 1, ...,N
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Improving Topic Models: III
Information about word similarity/semantics should be used
when building topics.

from “An Introduction to Word Embeddings”, blog by Roger Huang, 2017

I we use prior information about words from embeddings
I done recently by many in topic modelling and deep neural

networks
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ASIDE: Multi-Label Learning (MLL)

I same source data
I multiple labels
I one combined model/system to do it
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ASIDE: Multi-Task Learning (MTL)

I different source data
I different labels or tasks
I one combined model/system to do it
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ASIDE: Naive Multi-Task Learning
Have T somewhat related separate classification tasks.
Predict Yt from Xt using parameters Θt .

p(Yt |Xt , Θt) for t = 1, ...,T

X1

Y1 Θ1

X2

Y2 Θ2 ...

XT

YT ΘT
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ASIDE: Multi-Task Learning (MTL)
Add a shared parameter ΘG which captures “common knowledge”.

p(Θ̃t |ΘG) for t = 1, ...,T
p(Yt |Xt , Θt , Θ̃t) for t = 1, ...,T

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

NB. another hierarchical model with ΘG the parent node
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Prior Regression for MTL
Regress from metadata Ct onto task-specific version of common
knowledge Θ̃t , using parameters ΘG .

p(Θ̃t |Ct , ΘG) for t = 1, ...,T
p(Yt |Xt , Θt , Θ̃t) for t = 1, ...,T

C1

X1

Y1 Θ1

Θ̃1

C2

X2

Y2 Θ2

Θ̃2

...

ΘG
CT

XT

YT ΘT

Θ̃T

NB. in statistics, random effects models achieve this effect
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Improving Topic Models: III

Information about word similarity/semantics should be used
when building topics.
I we use prior information about words from embeddings
I done recently by many in topic modelling and deep neural

networks
I done using prior regression by Zhao, Du, Buntine, Liu ICDM

2017, Zhao, Du, Buntine, ACML 2017
I regress the metadata (e.g., word embeddings, document

labels) onto the model parameters during learning
I using fast “gamma regression”
I code available at He Zhao’s GitHub repo
I very good results
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Improving Topic Models: IV

Hierarchical structure between topics should be discovered.
I once we go beyond 20 topics, this supports explanation
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Topics Enhanced with Word Embeddings
Zhao, Du, Buntine, Zhou ICML 2018
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Putting Together an Algorithm

1. Build up a model including the various effects you may want:
I ML folks increasingly mixing deep NNs and statistical models

2. Develop an algorithm mostly using standard/generalised
techniques.
I MCMC such as Gibbs
I KL variational method
I general autodiff and stochastic optimiser, etc.

3. Parallelise again mostly using standard techniques.

While its not easy, it is becoming more routine. 148 / 152



Varieties of Probabilistic MF

from “Survey on ... Low-Rank Matrix Factorizations,” Shi, Zheng & Wang, Entropy, 2017
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Varieties of Infinite Vectors
from “Understanding Hierarchical Processes,” Buntine, forthcoming

Vector Process Normalised Hierarchical
beta process(M, 0, 1) Dickman(M)
gamma process(M, 0, β) Dirichlet proc. gamma(M, β)

gen. gamma proc.(M, α, β) Pitman-Yor proc. Tweedie(α,M1/α, β)

stable process(M, α) PYP end case pstable(α,M1/α)
Poisson process(M) multinomial proc. Poisson(M)
neg. binomial proc.(M, ρ) ? neg.bin(M, ρ)

I for most, inference generalises standard parametric methods
using the hierarchical version

I for some, need generalised Chinese restaurant processes
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Practical Advice

I for clustering text, TF/IDF (specifically, BM25) is a great
distance, so k-means works well

I for multi-fielded record data, k-means not good, model-based
theory exists, way too many statisticians projects

I for topic modelling, I recommend MetaLDA (on He Zhao’s
Github page), though Mallet is better supported

I there is good NMF software, but I have no experience
I embeddings, a crowded field: I use GloVe, great software and

prebuilt sets
I very good heterogenous graph embedding methods in R&D

now
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Questions?
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