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ACML in Bangkok

> 18-20th November at Berkeley Hotel Pratunam
» colocated with ICONIP

» cheap flight to Bangkok not much more than a flight to
Brisbane

P always a high quality tutorial and invited speaker programme!

Deadlines:
» journal track (for ML Jnl) papers due 15th April
» conference track papers due 15th June

» workshop and tutorial proposals due mid July
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Australian ML Research School

> 29th June to 1st July
» hosted at RMIT
» near Central Station in Melbourne CBD

» intended for research students
» cheap registration for students!
> website and details TBD
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Background

» ML is now happening at a world-wind pace, with a phase shift
happening a few years ago:
» huge teams making rapid using extensive compute resources
> results/methods already outdated and superceded at their
point of publication
» an “academic singularity” in a sense
> ML is widely recognised as a key technology component
across many industries, also driving Data Science
» This is a big-picture/big-ideas talk.
» no time for detail
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Machine Learning is ...

Google

. machine learning is

Google Search I'm Feeling Lucky

Machine Learning is ...

Google Search Trends
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https://www.google.com/
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=machine%20learning

QOutline

Historical Perspective
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What is Machine Learning?

(from Mactores Data Science Team)
Meaningful

Compression

Structure
Discovery

Image

P Customer Retention
Classification

Big data
Visualistaion

Dimensionality Feature Idenity Fraud

- Classification Diagnostics
Reduction Elicitation Detection

Recommender

Advertising Popularity
Systems

Prediction

upervised Supervised

Learning Learning Weather

Machine W

Growth
Prediction

Clustering
Targetted

Marketing Market

Forecasting

Customer

Segmentation L ea, r n i n g

Estimating
life expectancy

Real-time decisions

Reinforcement
Learning

Robat Navigation Skill Acquisition
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Machine Learning Timeline
A

Subjective Popularity

Vapnik, Cortes
J.R. Quinlan
Breiman
Freund, Schapire
Linnainmaa 1970
i -
5 o Decision Tree, ID3
& i =
& N
N 5
& & LeCun
Perceptron ~ Rumelhart, Hinton, Williams
o—n Hetch, Nielsen
- Hochreiter et. al.

Hinton

s Bengio

Neural VNeth)rk . / PS— LeCun

@ IDSIA AndrewNg.
Created by erogol
I [ I [
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2&10 2015

from http://www.erogol.com/brief-history-machine-learning/
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Deep Learning Timeline

Deep Neural Network

(Pretraining)
Multi-layered
XOR Perceptron
ADALINE Problem (Backpropagation)
Perceptron
Golden Age Dark Age (“Al Winter”)
Electronic Brain
1943 1957 1960 1969 1986 1995 2008

1960 1970 1980 1990 2000

S. McCulloch - W. Pitts F. Rosenblatt B. Widrow = M. Hoff

| | LN
M. Minsky = S. Papert D. Rumelhart - G. Hinton - R. Wll\ams V. VEpnIk C. Cortes G. Hinton - S. Ruslan
3 §§v 3}% ?'; - ® ——— Foward Acivty — | i ? y g
PR AR . s g =
N /TN ] DRORO) PR — A E
« Adjustable Weights * Learnable Weights and Threshold
* Weights are not Learned

. + Solution to noniinearly separable problems  + Limitations of lsarning pricr knowiedge * Histarchical feature Leaming
RO5 Excdien + Big computation, local optima and overfting + Kermel function: Human Intervention
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Machine Learning Tribes (circa 1990s)

Symbolists

Animals

Rnd

Mammals Birds

Use symbols,
rules, and logic
to represent
knowledge and
draw logical
inference

Favored
algorithm
Rules and
decision trees

Bayesians
Likelihood | Prior
Posterior | Margin

Assess the
likelihood of
occurrence for
probabilistic
inference

Favored
algorithm
Naive Bayes
or Markov

Connectionists
Cell body

Synapse

Recognize

and generalize
patterns
dynamically with
matrices of
probabilistic,
weighted neurons

Favored
algorithm
Neural
networks

Source: Pedro Domingos, The Master Algorithm, 2015

Evolutionaries

Generate
variations and
then assess the
fitness of each
far a given
purpose

Favored
algorithm
Genetic
programs

Analogizers

L)
L] L
L ]
L]

Optimize a
function in light
of constraints
(“going as high
as you can while
staying on the
road”)

Favored
algorithm
Support
vectors
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ML Timeline: Conferences

AAAI: American Association of Artificial Intelligence,

started 1980
P the second attempt, an earlier one done in 1960s

ICML: International Conference on Machine Learning,
started 1985

NeurlPS: Neural Information Processing Systems started 1988

—: in the interim ICML and NeurlPS merged in content
and the dominant paradigm become Bayesian neural
networks and nonparametric methods

ICLR: International Conference on Learning
Representations, started 2012
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ML Literature

| 2

v

a lot of the good work comes from the application
community: vision, media, natural language

preference to publish in conferences
most work appears on arXiv.org before publication

so use appropriately linked search engines (e.g.,
SemanticScholar.org not the publisher ones (e.g., Web of
Science, though this is great otherwise) to get arXiv cover
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https://arxiv.org/list/cs.LG/recent
https://www.semanticscholar.org/

Learning ML

» Python is the most common coding language

» generally need basic Probability, Linear Algebra and Calculus
to understand

> moves so fast, so better to look at recent text books,

e.g. Dive into Deep Learning
» most good books will be free online with PDF

> lots of great tutorials online

e.g. Machine Learning Summer Schools, browse recent ones and go
looking for slides and videos
» also at all the top conferences, ICML, NeurlPS, SIGKDD,
ACL, CVPR, and many more, usually with videos online

» for simple but uptodate introductions targetting amateurs, see
relevant sections on Medium.com

» Andrew Ng's courses on Coursera.org generally considered
best MOOC intros
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http://d2l.ai/
http://mlss.cc/
https://medium.com/topic/machine-learning
https://www.coursera.org/courses?query=andrew%20ng

QOutline

A Catalogue of Machine Learning ldeas
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Models

Real World Out There Model

(B -' |dentification of details
o relevant to description,
-f;" translation of ‘real’ objects

into variables of the model
from the BackReaction blog by Sabine Hossenfelder

but we focus on models that are predictive about out targets of
interest
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http://backreaction.blogspot.com.au/2008/04/emergence-and-reductionism.html

Simple Example: Binomial Model

Task: estimate the frequency for a Boolean event given a
sequence S of length N in the form S ¢ {T,F}VN

Model: probability of a single T is 6

Statistics: nt is number of Ts in S, ng is number of Fsin S

Examples:
» probability 6 that you have a malignant melanoma

> probability 6 that the top card from a deck is an ace
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Binomial Model Prior

p(0) =

concentration="prior count” = « + /3, and mean=p =

beta(0.14,0.1(1 — 1))

MNa+B)

()T (B)

beta(1p,1(1 — 1))

0 M (1—06)"

beta(107:,10(1 — p))

o
a+8"

concentration = 0.1

concentration = 1

1 =0.01
1=0.1
11=0.3

1=0.5 |]

oncentration = 10 1
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Binomial Model Inference

p(S.0) = réa)ﬁ(g 01 (1 — 0)7 10" (1 — 0)"
F(a+ﬁ—|—n7-~|—n,:)
(

a+nt—1 B+ng—1
p(6]S) - 0 (1-90)
a+n7)l (B + nF)
Sobeta(l),lu + 5,0.1(1 — p) + 10) R beta(p + 5,(1 — p) + 10) 5 beta(10u + 5.10(1 — p) + 10)
2.
4]
2.04
wrafion —0.1] ]
concentragion = U.
ofy :g nr = 5
N ng = 10
1.04
.
0.5
0.0 0
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Binomial Model Inference, cont.

p(S,0)

p(615)

_ (Oé + /3) a=1¢1 _ ;\B=lpnt (1 _ n\nF
ot a0
F(a + /3 +nr + nF) a+nt—1 _ n\B+ng—-1
F(a + nT) (,8 + n,:)e (1 9)

beta(0.1p + 50,0.1(1 — p) + 100) beta(p + 50,(1 — p) + 100) beta(10u 4+ 50,10(1 — ) + 100)
6 10 10 T
— 1 =0.01
=01
—_— =03
8 8 = =05
14
6 64
concentrafion =|0.1 concentratjon = 1 concentratipn & 10 50
3 g g nr=
& & o
4 4 nF = 100
2
2 2
14 \
o 0 0 \
0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
0 f 0
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Hierarchical Models

N\

\ \
| Reptile | ‘ Bird ‘

—I ] -

‘ Snake ‘ ‘ Lizard ‘ ‘ Parrot ‘ ‘ Horse ‘ | Bat ‘

» organise concepts into a
» ‘“share” model parts when learning to classify

e.g. recognising “leaves” is useful shared feature when learning to
classify trees, shrubs, flowering plants, etc.

» how can we design models for different tasks to do “sharing”?
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Hierarchical Models

N\

\ \
| Reptile | ‘ Bird ‘

—I ] -

‘ Snake ‘ ‘ Lizard ‘ ‘ Parrot ‘ ‘ Horse ‘ | Bat ‘

» organise concepts into a
» ‘“share” model parts when learning to classify
e.g. recognising “leaves” is useful shared feature when learning to
classify trees, shrubs, flowering plants, etc.
» how can we design models for different tasks to do “sharing”?

> implement the idea using a
tree-structured Bayesian network of parameters corresponding
to the hierarchy
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Hierarchical Bayesian Models

We have T “related” problems with data (X;, Y;).

@ \

s 7\
[ X1 A/ (X2 )
\\l‘/ \\I‘/
W) | vt
\\\7 /1/, t\\ /2/, e \\VT/ |

©1 — O task specific parameters

©F¢: shared parameters
©1 — ©71: task specific instantiation of shared parameters
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Knowledge-Based Reasoning

people use common-sense rea-

soning when doing classifica-

L tion:

» school bus (in America)
is yellow and carries
children

P a single adult with
children may be their
teacher
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Knowledge-Based Reasoning

people use common-sense rea-

soning when doing classifica-

L tion:

» school bus (in America)
is yellow and carries
children

P a single adult with
children may be their
teacher

» the kind of knowledge used is often different to that found in
standard knowledge-bases like DBPedia

> knowledge-bases are implemented as graphs in Al with objects
as nodes and relationships as arcs
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A Simple Causal Model

visited
Asia
) 4
@‘:ulosis )

NB. this famous figure is due to Lauritzen and Spiegelhalter, 1989
(don’t blame me for implying Asia gives you tuberculosis!!)
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A Simple Correlational Model

Low tiber™,

Web of Causation of Diabetes Mellitus

from https://www.slideshare.net/VishnuYenganti/association-causation

NB. which relations are due to cause?
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Vision Understanding

original video frame

How can we segment the image?
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Vision Understanding: Stereo

stereo segmentation

\@/

N / N\
-

— %

» Stereo gives us depth.

» Causality: neighbour pixels at different depth should be
different objects, so segment.

— the woman is at a different depth to others, so segment off
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Vision Understanding: Stereo

stereo segmentation

8

N 7 0N\
-

. Y

» Stereo gives us depth.

» Causality: neighbour pixels at different depth should be
different objects, so segment.
—— the woman is at a different depth to others, so segment off

similar tricks can be applied to video with motion
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Using Causality: Example

Task: we want to collect data about car accidents. Which
variables should we collect?

» external car color?
» color of seats?
» air-conditioning?

» quality of tyres?
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Using Causality: Example

Task: we want to collect data about car accidents. Which
variables should we collect?

» external car color?
» color of seats?
» air-conditioning?

» quality of tyres?

When choosing variables, we try and imagine a causal connection
from variable to cause of accident.
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Causality

» causality allows much simpler models of the world

» important technique for configuring learning problems in
medicine and science

» humans are very good with causal reasoning

» we infer causality based on time effects, controlled play, and
the simplicity it provides in understanding the world
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Causality

» causality allows much simpler models of the world

» important technique for configuring learning problems in
medicine and science

» humans are very good with causal reasoning

» we infer causality based on time effects, controlled play, and
the simplicity it provides in understanding the world

P> modelling causality is strongly related to modelling
probabilistic independence

P causal models yield the most comprehensive independence
statements

» involves the capability of modelling , externally
fixing variables

» rather than just passive observation
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Causality

>

NB.

causality allows much simpler models of the world

» important technique for configuring learning problems in
medicine and science

humans are very good with causal reasoning

» we infer causality based on time effects, controlled play, and
the simplicity it provides in understanding the world
modelling causality is strongly related to modelling
probabilistic independence
P causal models yield the most comprehensive independence
statements

involves the capability of modelling , externally
fixing variables

» rather than just passive observation | CAUSALITY |

- SECOND EDITION

o

see Judea Pearl's book “Causality”

26 /101



The Do Calculus: Interpretation

» for variable X, represents the statement that X has
been set by (outside) intervention
> we seek to evaluate and simplify statements involving
> ALB | do(X),Y (independence)
> p(A| B, do(X)) (probability)
P> given a graphical model G over variables U, interpret the
graph as causal, and the individual node probabilities
p(u|par(u)) as causal prescriptions
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The Do Calculus: Interpretation, cont.

Probability theory: Given a graphical model G over variables U,

consider p(A|B). Let anc(V) be the ancestral set of V, then

p(A\B):% 3 ( 11 P(UIpar(U)))

anc(AUB)\AUB \u€anc(AUB)

Causal probability theory: Given a graphical model G over
variables U, consider p(A|B, ) . Then

pAB ()= 5 Y ( 11 p(u|par(u)))

anc(AUB)\AUB (AUB)

—— you eliminate terms [Tex p(x|par(x)) !
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The Do Calculus: Interpretation, cont.

Probability theory: Given a graphical model G over variables U,

consider p(A|B). Let anc(V) be the ancestral set of V, then

p(A\B):% 3 ( 11 P(UIpar(U)))

anc(AUB)\AUB \u€anc(AUB)

Causal probability theory: Given a graphical model G over
variables U, consider p(A|B, ) . Then

pAB ()= 5 Y ( 11 p(u|par(u)))

anc(AUB)\AUB (AUB)

—— you eliminate terms [Tex p(x|par(x)) !
——> Pearl’s 3 rules of do-calculus follow somewhat simply
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Using Causality

» Simple classification/regression tasks are usually configured by
experts:

» they use their own knowledge of causality to decide what
variables to use/collect

> We're now developing:

» life-long learning
» multi-task learning

where hand-configuring by human experts cannot be done.

> More complex learning systems need to “self-configure” so
they will need to use causality.

29 /101



Bayes-Optimal Parameter Search

» Gaussian processes are a suped-up version of least squares
regression that allows:

> fitting non-linear functions
» point-wise estimates of uncertainty

» But they only work well in low dimensions.
» less than 6, so in R®

> By adding a exploration-exploitation affect, you can use them
to do “optimal non-linear optimisation”.
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Bayes-Optimal Optimisation

t=2

objective fn (f( )

observation (x)

V¥ acquisition max

acquisition function (u(-))

t=3

new observation (x,)

posterior mean (y(-)

posterior uncertainty
() o () v
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Hyper-parameter Tuning

» Many learning algorithms have several hyper-parameters

» )\ tradeoff in regularisation
» tree depth in XGBoost

» How do we set them?
» Use Gaussian process optimisation!
» Good packages in Python etc., exist
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Information Retrieval: Images

15:21 o Bl 4G D

& https:/www.bin... JE3 H

SIMILAR IMAGES

YMCA Wanakita: S... Superintendent co...
blogspot.com My Edmonds News

image search gives

Snow extends sch...

Rentrée: les nouvel... The Daily ltem

onfr.tfo.org

Names chosen for ...

Corvallis schools b.. . hometownso...
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Information Retrieval becomes ML

Information Retrieval (IR): from a single query (image, text),
retrieve “best” matching documents. e.g. text/image search engine

» this is like learning from just one example!

» called in Deep Neural Networks,
especially for images

» start of the-art in IR is deep neural networks!

» see SIGIR 2018 tutorial by Xu, He and Li
» to my knowledge IR techniques and one-shot researchers do
not intersect!

» Google has now installed BERT in their search.
> is a (text) counterpart technology for one-shot learning
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Active Learning

Category model

‘Wi

“bicycle”

¥
flickr| —

Unlabeled images Selected examples

from kisspng.com “active learning machine learning”

WARNING: active learning is an old field, very fragmented, and no
good recent survey articles exist.
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Bayesian Theory TL;DR (skip)

» there are strong theoretical justifications for using
Bayesian methods
» betting arguments: Dutch books
» decision theory arguments: von Neumann-Morgenstern Axioms
» coherence arguments: Cox's axioms
» but these ignore three key issues:
» computational complexity
» multi-agent reasoning
> model adequacy (the “truth” must be in the model family)

» of the kind that applied ML people well understand!
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Bayesian Theory TL;DR (skip)

» there are strong theoretical justifications for using
Bayesian methods

» betting arguments: Dutch books
» decision theory arguments: von Neumann-Morgenstern Axioms
» coherence arguments: Cox's axioms

» but these ignore three key issues:

» computational complexity
» multi-agent reasoning
> model adequacy (the “truth” must be in the model family)

» of the kind that applied ML people well understand!

» and they don't say you must *use* Bayesian methods

P just that you should be reasonable consistent in results with
Bayesian methods
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Applied Bayesian Methods (skip)

» in practice we do hybrids, compromises, and variations,
i.e., “applied Bayesian”
> like regularisation
» like ensembling
» so-called “empirical Bayes” (e.g., with cross validation)
» MDL and MML approaches

» while being cognizant of the three key issues
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Applied Bayesian Methods (skip)

» in practice we do hybrids, compromises, and variations,
i.e., “applied Bayesian”
> like regularisation
» like ensembling
» so-called “empirical Bayes” (e.g., with cross validation)
» MDL and MML approaches

» while being cognizant of the three key issues

Bayesian methods are not an application technology.

They motivate new methods and give alternative intepreta-
tions of new methods developed otherwise.
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Metrics and Divergences (skip)

» Often times learning is represented as minimising a cost,
sometimes between the model and the empirical data
distribution.

> Given a data set {x1,...,Xn}:

1 N
pdata(z) = N Z 1)?,-:)?
i=1

» To this a regularisation term may be added (to be
pseudo-Bayesian).

> So we seek to minimise a cost between a parameterised
probabilistic model p(X|®) and the empirical data distribution

L (Pdata(X), p(X|®))

» At the very least, L(-,-) should be a
» To this a regularisation term may be added (to be
pseudo-Bayesian).
R(®) = [|®|]”
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Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex
Jensen-Shannon divergence is used

Total variation: (TV) in discrete domain X, is
TV(p, q) = max|p(x) — q(x)|

Others: mean square error, absolute error, ...
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Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex
Jensen-Shannon divergence is used

Total variation: (TV) in discrete domain X, is
TV(p, q) = max|p(x) — q(x)|

Others: mean square error, absolute error, ...

Example cost function:

KL (Pdata(X), p(X|®)) + Al|®|[?
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f-Divergence (skip)

Is the class defined on probability functions p(-) and q(-) by
Dr(p,q) = /Xq(X) f (Zg;) dx
= sup (Exmp [T()] = Exnp[F1(T (x))])

for convex univariate function f(-), its conjugate f*(-) and T(-) is
any function suitable for the domain of *(-).
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f-Divergence (skip)

Is the class defined on probability functions p(-) and q(-) by

D¢(p,q) = /xq(x)f(ZEiD dx
= ?’ng (Exmp[T(X)] = Exmp [F(T(x))])

for convex univariate function f(-), its conjugate f*(-) and T(-) is
any function suitable for the domain of *(-).

» second line (conjugate formulation) due to Nguyen,
Wainwright, Jordan, 2010

» generally requires p(-) and g(-) have the same domain (are
zero for the same arguments) — models must fit truth!

» includes both K-L and TV as special cases, and also J-S
divergence (symmetrised K-L)
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f-Divergence: Examples

Nam D¢(P|Q) Generator f(u)

Total variation [ Ip(x) = q(z)| dz Tlu—1

Kullback-Leibler J p(a)log s

ulogu
Reverse Kullback-Leibler [ g(x)log J75 dar —logu

Pearson > AL L2 8 (u—1)%

T ) 1—u)®
Neyman y~ -

Squared Hellinger (Vu—1 )2

Jeffrey (p(x) —q(x)) log (u—1)logu

Jensen-Shannon [ p(x) log 2= —(u+1)log 1% + wlogu

Jensen-Shannon-weighted [ p(x)7 i ( IR far yen mulogu — (1 — 7 + wu)log(1 — 7 + 7u)

N [ p(x)log ——=FE— + . ; - uwlogu — (u+1)log(u+ 1)

a-divergence (a ¢ {0.1}) . { (u* —1—=a(u—1))

from Nowizin's GAN tutorial, MLSS 2018, Madrid

Most metrics have large tables of alternatives like this.
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Bregman Divergence (skip)

Is the class defined on discrete probability vectors g and g as
Br(B.q) = F(B) — F(§) — (F—d)" VF(J)

for convex vector function F(-).
» includes K-L and a variation gives TV

P intersection with f-divergence is the class of alpha-divergences
or Rényi entropies
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Transport Metrics (skip)

Is the class defined on probability functions p(-) and q(-), given
distance d(-, -) sharing the same domain

Wa(. (P, q) = sup |Exmp [T(x)] = Exng[T(¥)]]

where T(-) must satisfy |T(x) — T(y)| < d(x, y).
» for standard Euclidean metric, this means T(-) is 1-Lipschitz
» coarsely implemented with deep networks using “weight
clipping”
» includes TV as the trivial case where d(x,y) = 1=,

» rather similar in form to second variation of f-divergence
(indeed, they are the same for TV)
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Metrics and Divergences, cont.

» An embarrassment of riches!
» But what guidance do we have regards the best choice?
» theory is more about relationships and general properties
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distribution is equivalent to maximum likelihood.

» an old result from the physicists
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Metrics and Divergences, cont.

» An embarrassment of riches!
» But what guidance do we have regards the best choice?
» theory is more about relationships and general properties

> K-L divergence where the first argument is the empirical data
distribution is equivalent to maximum likelihood.

» an old result from the physicists

P Reasonable criteria, based on large sample theory, is they be
proper scoring rules.
» most differentiable cost functions are, e.g., not TV!
P Far less guidance in the small sample case.
» Bayesian ideas can help!

» Some applications are not model fitting but data
summarisation.

e.g., hierarchical clustering
» so motivation for selection of cost is completely different
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The K-L Variational Setup (skip)

The , also called mean field is based on the
following information theoretic identity:
log p(x|©) — KL (q(z|x)[p(z]x,©)) (1)
= Eq0[logp(x,2|©)] + H(a()) (2)

» data is x, latent variables z, model parameters ©

» q(z|x) is an introduced probability density and we can vary
how we like

» theoreticians have tried to reproduce/generalise this to other
divergence/metric paradigms
» haven't succeeded
P the relationships between probability, independence and K-L
are unique!
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The K-L Variational Setup (skip)

The variational identity:
log p(x|©) — KL (q(z]x)[[p(z1x. ©)) (1)
= Eqq[logp(x,2|©)] + H(a()) (2)

» To maximise p(x|©), therefore repeatedly
1. increase (1): get q(z|x) closer to p(z|x,®©) in K-L
2. increase (2): by optimising/gradient-descent w.r.t. ©
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The K-L Variational Setup (skip)

The variational identity:

log p(x|©) — (1)
= Eqpllogp(x,21©)] + H(q()) (2)

» To maximise p(x|©), therefore repeatedly
1. . get q(z|x) closer to p(z|x,©) in K-L
2. increase (2): by optimising/gradient-descent w.r.t. ©
> for exponential family, Step 1 & 2 are usually simple

» when g(z|x) = p(z|x,©), a local maxima is achieved!
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A Probabilistic Model (ML circa 2000s)

1. For each topic k:
(a) For each doc-label I: Draw A;  ~ Ga(puo, o)
(b) For each word-feature l": Draw ;' ~ Ga(wvo, v0)
(c) For each token v: Compute By, = Hf,‘:.’f"” 515'“3;
(d) Draw ¢, ~ Diry(8;)
2. For each document d:
(a) For each topic k: Compute ag . = {“:"l )\fi‘gi
(b) Draw 84 ~ Dirg(ag)
(c) For each word in document d:
i. Draw topic zq4,; ~ Catk(64)
ii. Draw word wg ; ~ Caty (@, )

from Zhao etal. KAIS 2017

Probabilistic model for fancy topic modelling: MetalLDA.
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A Probabilistic Model, cont.

Deriving the posterior:

Pr(z1. D,’w1 D;a1:p, B, K)
v

/ Zk 1adk) mdk+adk 1/ H 'u 1/819’0 H ”k o FHBrv—1,
0 I'(Br,v)

d=1 lcl adk) v=1

_ Betag (ag + mg) Betay (8, + nk)
H Betag (atg) H Betavk(,Bk) )

Deriving a Gibbs sampler:

Pr(zq; = k. 2|,y wi.p, 1.0, B1.x)
Pr(zy, 5" wi.p, @1.p, By.x)

Bk,v +nk,v

Br,. + Nk,

Pr(za; =k |z, 5" wi.p, 0.0, B.x) =

®3)

x (aa,r + md,k)

A complex task, takes advanced statistical training!
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Old ML versus New ML
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What did We Learn from Old ML?

> models as first-class objects
e.g., Bayesian & Markov networks, neural networks
» how to do linear and partitioning models well
e.g., XGBoost, online LDA, exponential family, additive models
> how to augment them with fancy mathematical tricks
e.g., kernels, non-parametrics (infinite vectors)
> cost functions and statistical ML theory

e.g., bias-variance tradeoff, regularisation, metrics and divergences,
variational methods

P paradigms
e.g., online learning, active learning, transfer learning

Bengio et al.s’ “Representation Learning: A Review and New
Perspectives” 2013 /EEE PAMI article has a nice summary!
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How Does Deep Learning Innovate?

» Model/Spec driven black-box algorithms ease the workload of
developers.

» machine learning without statistics!
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» Model/Spec driven black-box algorithms ease the workload of
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» Porting down to GPUs or multi-core allows real speed.

P Learning representations and discovering higher order
concepts.
» convolutions, structures, sequences, ...
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Model/Spec driven black-box algorithms ease the workload of
developers.

» machine learning without statistics!
Porting down to GPUs or multi-core allows real speed.

Learning representations and discovering higher order
concepts.

» convolutions, structures, sequences, ...

High capacity makes them very flexible in fitting and does
implicit parallel search.
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Does Deep Learning Innovate?

Model/Spec driven black-box algorithms ease the workload of
developers.

» machine learning without statistics!

Porting down to GPUs or multi-core allows real speed.
Learning representations and discovering higher order
concepts.

> convolutions, structures, sequences, ...

High capacity makes them very flexible in fitting and does
implicit parallel search.
Allows “modelling in the large”:

» learning to learning

» multi-task learning

» imitation learning

> convolutions, structures, sequences, ...
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How
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Does Deep Learning Innovate?

Model/Spec driven black-box algorithms ease the workload of
developers.

» machine learning without statistics!

Porting down to GPUs or multi-core allows real speed.
Learning representations and discovering higher order
concepts.

> convolutions, structures, sequences, ...

High capacity makes them very flexible in fitting and does
implicit parallel search.
Allows “modelling in the large”:

» learning to learning

» multi-task learning

» imitation learning

» convolutions, structures, sequences, ...
NB. we can do some of this with hierarchical Bayesian models
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The Old Versus The New: |

The Old: need experts to carefully design algorithms:

> experts need knowledge of distributions and techniques like
variational algorithms or Gibbs samplers to construct
algorithms

> statistical knowledge intensive

The New: (semi) automatic black-box algorithms:
» automatic differentiation, ADAM optimisation, etc.
» port down to GPUs or multi-core, etc.

P easier to scale algorithms
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The Old Versus The New: I

The OIld: modelling in the small:
» huge range of components can be used

» individual components need care and attention for algorithm
development

The New: modelling in the large:
» whole blocks can be composed

P general purpose methods deal with it
P restricted in allowable components
» use concrete distribution and reparameterisation trick
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The Old Versus The New: Il

The Old: components often directly interpretable:

P parameter vectors can have easy interpretation

The New: black-box model requires “explanation” support:
P cannot interpret the model
» need techniques like LIME and SHAP to intepret results
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QOutline

A Catalogue of Deep Learning Ideas
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Making Deep Learning Work

Cost function example:

KL (Pdata(X), p(X|®)) + Al|®|[?

P cost function has an error term and a regularisation term

» use a coding language such as TensorFlow to specify an
architecture (the model with parameters ®)

> can be used to generate code for
derivatives

» hooked up to a self-tuning and stochastic variation of gradient
descent
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Making Deep Learning Work

Cost function example:

KL (Pdata(X), p(X|®)) + Al|®|[?

P cost function has an error term and a regularisation term

» use a coding language such as TensorFlow to specify an
architecture (the model with parameters ®)

> can be used to generate code for
derivatives

» hooked up to a self-tuning and stochastic variation of gradient
descent

The cost function is approximately minimised semi-
automatically, so the effort is in specifying the architecture
and the cost function.
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Deep Representations

Patterns of Local
Contrast

>
<3
%

J
N

23

R
2

7]
N

X
KD
P

Output Layer
Hidden Layer 2
Hidden Layer 1

Input Layer

from https://thedatascientist.com/what-deep-learning-is-and-isnt/

IDEA: different layers of the network “learn” alternative
representations of elements in the image
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A Simple Network

DATA INPUT + — 1 HIDDEN LAYER OUTPUT
Which dataset Which r v Test loss 0.000
do you want to properties do Y= Training loss 0.000
use? you want to
feed in? 2 neurons
X
@ X,
Ratio of training <
to test X2 This is the output
X from one neuron.
data: 50% Hover to seo it
B larger.
X5
Noise: 0
XX,

Batch size: 10
— sin(X,)

Colors shows

REGENERATE data, neuron and ‘— t‘l —‘

in(X,
sin(X,) weight values.

[0 showtestdata [ Discretize output

56 /101



A Bigger Network

DATA

Which dataset
do you want to
use?

Ratio of training
to test

data: 50%
[ N—

Noise: 0
o

Batch size: 10

REGENERATE

INPUT + — 4 HIDDEN LAYERS

Which

properties do

you want to 7 = A= A=

feed in? 4 neurons 5 neurons 5 neurons
X

X,
X2
%2
XX
sin(X,) This is the output
from one neuron.
Hover to see it
larger.
sin(X,) 2

OUTPUT

Test loss 0.086
4+ — Training loss 0.048

4 neurons

The outputs are
mixed with varyin|
weights, shown -5
by the thickness
of the lines.

Colors shows
data, neuron and y
weight values. i

O showtestdata [ Discretize output
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A Real Noetwork f

[ S0neurons ]
[ 100 neurons

z: 3x3 kernel

3x3 kernel

5x5 kernel
—

AS kernel

%xs kernel
H
[ Normalizafion ]

4

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
64@1x18

Convolutional
feature map
64@3x20

Convolutional
feature map
48@5x22

Convolutional
feature map
36@14x47

Convolutional
feature map
24@31x98

Normalized
input planes
3@66x200

rom Nvidia

CNN architecture for

driving a car from
2016

27M connections but
250k parameters

convolutions mean
there are less
parameters than
connections

the working system is
compiled from
high-level
architectural specs
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Symmetric and Sparsity in Modelling

Observation: in 2005 | tried adding complex word priors to LDA
that had the effect of breaking the symmetry in the model
— fitting was terrible despite being a good prior!

Model symmetry: identical blocks in a model with random
initialisation allow alternatives to appear organically

Model sparsity: many alternatives act as a form of implicit
parallelism

These two constructs help explain a lot of the surprising empirical

observations where deep NNs seemingly defy statistical learning
theory
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Data Augmentation

(w Original Image
“ De-texturized

De-colorized
Data Augmentation

Edge Enhanced

Salient Edge Map

w[é Flip/Rotate
"4 v "

\

from Ahmad, Muhammad and Baik, PLoS ONE 2017
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Data Augmentation: MNIST

» technique first used in Zipcode
recognition for the US Post

» images can be rotated, shifted,
thinned, etc.
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Data Augmentation, MNIST Discussion

> Examples:
» for digit recognition from images, we want invariance under (1)
small shifts, (2) small rotations, (3) thickness changes.
» for bank loan assessment, we want monotonicity in (1) salary
and (2) bank balance, but not age
» It is hard to design these in as of the resultant
classification algorithm.
> It is easy to do data augmentation: generate 10 variants of
each digit to use for training.

» Recent differential /regularisation techniques can also
“encourage” invariants and monotonicity to hold

» also useful for introducing fairness in learning
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Data Augmentation, Discussion

» We need to identify an invariant in our data we want to hold.

e.g. For text, we could replace synonyms, convert cases (active to
passive, past to future tense), etc.

> We need an algorithm to apply changes to the data reflecting
the invariant.

» Probabilistic model, for the augmentation distribution Aug,
treats it like a convolution:

p(yi| xi, ©) standard data likelihood
/ p(yi| X, ©)p(x|xi, Aug) dx’  augmented data likelihood
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Sharing

Input Layer

Multi- Task Learning

» 3 tasks A, B and C

n

> share lower layers of the network as “pattern” features

» upper layers specialise for tasks
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Feature Sharing

Food
= Buiing

@5 =3
M ) 414 (B

= .
(ﬁi.)'———( mnt_ \ (_E)
@=L

Garment Furniture

e @)

figure

from Bhattacharjee et al, ArXiv, 2019

Shows amount of feature sharing done by a multi-task object
categorisation system. In this case, level of sharing was learnt.
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Pre-Training: Initialisation

Patterns of Local
Contrast

Output Layer

Hidden Layer 2

Hidden Layer 1
Input Layer

1. train the network initially on a very large set of “somewhat”
related images

2. leave the values as an initialisation
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Pre-Training: Fix Features

fix lower layers tune upper layers
on new data

Output Layer

Hidden Layer 2

1. train the network initially on a very large set of “somewhat”
related images

2. fix the lower levels of the network

3. for a new, different, and smaller set of specialised data, tune
the upper network to better fit the new data
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Pre-Training: Fix Features, cont.

fix lower layers .
tune upper layers

on new data’

Output Layer
Hidden Layer 2

Hidden Layer 1

1. train the network initially on a very large set of “somewhat”
related images

2. fix the lower levels of the network

3. for a new, different, and smaller set of specialised data, tune
the upper network to better fit the new data
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Pre-Training Method

dataset (no labels)

pre-training
model

pretext
task

knowledge
transfer

target
. . task

target model

from Noroozi, Vinjimoor, Favaro, Pirsiavash, CVPR 2018
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Pre-Training: Discussion

> pre-training is a way of initialising and/or a way of providing
lower-level features
» able to make use of very large unlabelled datasets for text and
images
> we pre-train on a large set of data once, and reuse the
pre-trained model many times

> for lower-level features, you would hope the tasks have
“lower-level” similarity
» if you have less training data for your new task, leave more of
the lower-level layers intact
» reduce the capacity of the network to be tuned, since there is
less data available to do it
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Pre-Training: Discussion, cont.

How useful are these three images sets for subsequently learning
flowering plants?

'iigﬁ“ﬁ% [RASkET:
[ [

!z;&lﬂgmiﬁt ,,
ltg_.._ SOn | IE.-Q!.E]
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Self-supervision

» to do pre-training, we need a task for learning
» embedding methods are an early precursor

» pre-training should build lower-level features useful for
subsequent target classes

an artificial task created for the purposes of

learning a network useful as a pre-trained network.

> called “self” supervised since the task is created automatically
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Self-supervision, cont.

an artificial task created for the purposes of
learning a network useful as a pre-trained network.

» examples for image recognition:

» color a B/W image

» fill-in missing patches (“image in-painting”)

> object classification from very broad image class
> examples for text classification:

P predict missing words
» forwards and backwards order
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» color a B/W image

» fill-in missing patches (“image in-painting”)

> object classification from very broad image class
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P predict missing words
» forwards and backwards order

» generally, the self-supervision task should be (1) richer and
more refined than or (2) similar to subsequent target tasks
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Self-supervision, cont.

an artificial task created for the purposes of
learning a network useful as a pre-trained network.

» examples for image recognition:

» color a B/W image

» fill-in missing patches (“image in-painting”)

> object classification from very broad image class
> examples for text classification:

P predict missing words
» forwards and backwards order

» generally, the self-supervision task should be (1) richer and
more refined than or (2) similar to subsequent target tasks

» fundamentally different to component models builts as a
latent variable models (e.g., matrix factorisation)
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Pseudo-likelihood and Self-supervision

A (Besag 1975) is an approximation to the joint
probability distribution of a collection of random variables using
univariate conditionals:

p(X1©) = [] p(x| X\ {x},0)

xeX

P it is easily computed because the individual conditionals can
usually be easily marginalised.

» used to train Markov networks in neural networks

» Maximising pseudo-likelihood is known to be consistent with
maximising likelihood in the limit of infinite data.

» Pseudo-likelihood can be viewed as a simplified theoretical
view of self-supervision.

> But an alternative view is of representation learning.
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Artificial Faces

Early Generative Adversarial Networks (GANs) were trained to
generate new faces given 1000s of examples.

75/101



Generative Deep Learning

» the Generative Adversarial Networks
(GAN) and Variational Autoencoder
(VAE) implement the same model but
with different algorithms

> model is on the left
» GAN doesn't explicitly find Z during
training

76 /101



Generative Deep Learning

» the Generative Adversarial Networks
(GAN) and Variational Autoencoder
(VAE) implement the same model but
with different algorithms

> model is on the left
» GAN doesn't explicitly find Z during
training

» this is a generalisation of LDF, PMF, ICA,

P PCA, etc., all the matrix factorization

models

» in our experience, individual elements of
the latent vector Z are encouraged to be
independent

» more independence means higher
capacity model
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Variational Autoencoder, cont.

» The original VAE algorithm is similar to
the standard variational method
> g(Z|X) is fit using Equation (2), not (1)
» so in principle it can optimise
» surprisingly good scaling properties using
amortisation

A\
[ x :w > very good topic model variants exist

» needed Bayesian guys to do a hybrid
I— Deep-Bayesian method
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Generative Deep Learning, cont.

» the original GAN is (almost) equivalent to
minimising conjugate formulation of J-S
divergence between data and model

» Nowozin's GAN tutorial at MLSS 2018
> data distribution in this case is

p(x|data) = Z

-
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Generative Deep Learning, cont.

» the original GAN is (almost) equivalent to
minimising conjugate formulation of J-S
divergence between data and model

» Nowozin's GAN tutorial at MLSS 2018
> data distribution in this case is

/
e a p(x|data) = % Z Ox=x
i=1

» is the adversarial framework a mathematical

digression?
i/;\ » applying K-L divergence to same data
~ distribution is equivalent to maximum
likelihood!

» GANs are judged completely differently to other
learned models

P state-of-the-art GANs use transport metrics and
ensembles (I'm told)
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Encoder-Decoder Versus VAE

ENCODER [~~~ ~~=~=====7==77

SE—
-

Input Layer
Output Layer

right figure from Wikipedia

The encoder-decoder framework can be interpreted probabilistically
as a GAN/VAE type model where the latent variable h is discrete
instead of real-valued.
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Disentangling Concepts

> is a term popularised in Bengio, Courville, and
Vincent's classic 2012, IEEE Trans PAMI paper

» term is somewhat vaguely defined in the literature!
» we want discovered latent variables of a GAN/VAE to be
“independent causally” w.r.t. the task
e.g. consider the task of digit recognition

» color, rotation, shift, thickness, font style are independent
dimensions we would like to discover that are irrelevant to the
digit classification
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Disentangling Concepts

> is a term popularised in Bengio, Courville, and
Vincent's classic 2012, IEEE Trans PAMI paper

» term is somewhat vaguely defined in the literature!
» we want discovered latent variables of a GAN/VAE to be
“independent causally” w.r.t. the task
e.g. consider the task of digit recognition

» color, rotation, shift, thickness, font style are independent
dimensions we would like to discover that are irrelevant to the
digit classification — disentangle them!
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Graph Embeddings
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P techniques similar to word embeddings have been developed
for graphs

» similar techniques apply: cost functions, negative sampling,

P> nodes in graphs also have extensive side information

» “hospital patient” node in a graph may have their
socio-economic data attached as an attribute of the node
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Learning Infrastructure
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Learning Infrastructure
Tasks
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Consider Object Recognit

T

lon

b e

image from Heiko Hoffmann, HRL Laboratories, DARPA 2019

Wouldn't it be good if we could learn all the different object
classes with just a few examples!
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One-Shot Learning

Training image

Karlinsky et al, CVPR 2019

To do large scale object recognition and scene understanding in
images, it would be good to have one-shot (or “few-shot”) learning
working.
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One-Shot Learning, cont.

zero-shot: recognise given a description rather than an example,
i.e., thisis IR
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One-Shot Learning, cont.

zero-shot: recognise given a description rather than an example,
i.e., thisis IR

few-shot: recognise from a few examples,
i.e., this is data poor learning

one/few-shot have a wide variety of approaches
research largely in image recognition

current focus is the continuum between 0-1-few-many

vvyyypy

requires a trade-off of prior knowledge and data
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Covariate Shift

Visible Light Sensor Visible Light Sensor
Rural Environment Urban Environment

New
Environment

figure

from Eisenberg, Embedded Intelligence, DARPA 2019
Changing the context or background distributions, makes
recognition different.

Called covariate shift, and a form of domain adaptation. 55101



Covariate Shift, cont.

Problem setup: target variables or input data changes in
distribution; for prediction of y; from features x;

» in covariate shift, p(x;) changes, not p(yi|x;)
» however, new data after shift will occur outside the “comfort
zone" of the initial trained system
» if training builds a causal model, it should be robust to
covariate shift
» but rarely done!
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Task Types

(my take on the old ML version)

Shift: target variables or input data changes in distribution;
for prediction of y; from features x;:

Online: learning and evaluation is done incrementally
Multi-task: several/many related tasks are done
Life-long: new, somewhat related tasks are constantly appearing

Human in the Loop: during learning, varied forms of human
involvement:

P can choose to label via active learning
» similar to (i.e., a flawed oracle)

Recognition: identifying an object within a broader context
P objects in vision, named-entities in text
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Task Types

(my take on the old ML version)

Shift: target variables or input data changes in distribution;
for prediction of y; from features x;:

Online: learning and evaluation is done incrementally
Multi-task: several/many related tasks are done
Life-long: new, somewhat related tasks are constantly appearing

Human in the Loop: during learning, varied forms of human
involvement:

P can choose to label via active learning
» similar to (i.e., a flawed oracle)

Recognition: identifying an object within a broader context
P objects in vision, named-entities in text

is usually situated in these richer learning tasks
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Learning Infrastructure

Supervision
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Weak Supervision

WordNet Synset WordNet Synset Dbpedia Entry
Airplane Propeller ' Joined in' Prop.eller'
1
BEI FEIL
B ERL H ",
s gl s H
=1 WordNet EEa v b
w dN'S Meronym "S
ordNet Synset WordNet Synset " Wikipedi
_——— . - DBpedia pedia
Propeller Plane * Airplane Propeller =~ X Tramiations Description
- v 4 No DBpedia Hélice “A propeller is a
E ) Entry o2 type of fan that
=y Sruba okretowa transmits
power...

figure from Stephen Bach, Brown University, DARPA 2019

Different kinds of “weak” information about a concept can be used

to support learning —— weak supervision.
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Semi-Supervised Learning
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Entropy Minimisation for Semi-Supervised
Learning
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Supervision Types

(my take on the old ML version)

Supervised: classes or target variables for prediction are supplied
with the data

Unsupervised: no supervision is given at all; learn about the data
generally

Semi-supervised: classes or target variables for prediction are
supplied with the data for only a (smaller) subset of
data

Weakly supervised: incomplete or approximate supervision supplied
with the data

Self-supervised: an artificial task is created for the purposes of
pre-training
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Learning Infrastructure

Background Knowledge
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Background Knowledge Types

Related tasks: useful for selection of data for pre-training and
related systems for domain adaptation, ...

Features: causal relationships, invariances to support

augmentation, as trained by pre-training, ...

Data augmentation: invariants, monotonicities other properties of
data ...

Weak supervision: special case of related tasks, useful for partial,
initial or filtering models, ...

Task descriptions: used for weak-supervision, selection of related
tasks, ...

Regularisation: entropy minimisation, consistency regularisation,
prior rate alignment, ...
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Background Knowledge Types

Related tasks: useful for selection of data for pre-training and
related systems for domain adaptation, ...

Features: causal relationships, invariances to support
augmentation, as trained by pre-training, ...

Data augmentation: invariants, monotonicities other properties of
data ...

Weak supervision: special case of related tasks, useful for partial,
initial or filtering models, ...

Task descriptions: used for weak-supervision, selection of related
tasks, ...

Regularisation: entropy minimisation, consistency regularisation,
prior rate alignment, ...

These often work orthogonally to tasks
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Meta-Learning
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Meta-Learning

Meta-Learning: where learning is applied to support the task of
learning itself.

P meta learning strongly inspired by the human experience
» my motivation for entering Machine Learning in 1984

> is patchwork of different techniques, not a single consistent
method

» reinforcement learning
» hierarchical Bayes
> architectural tricks in deep learning
> large groups are building pipelines and architecture
» one of a few key “hot” areas in ML
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Multi-Task Learning (MTL)

We can rebrand hierarchical Bayesian modelling as multi-task
learning.

( X1 ) ‘ { Xo ) [ X1 )
\l// @ \l/ @ \\l/ @

©1 — ©7: task specific parameters
©C: shared parameters
©; — 67 task specific instantiation of shared parameters
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Simple Meta-Learning

Shared parameters ©¢ could be:
» hyper-parameters of optimiser (e.g., step size)
P> parameter initialisations

> lower-level part of a deep NN

Each of these has a huge recent literature!
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Model Agnostic Meta-Learning

— meta-learning
---- learning/adaptation

A
VL,
A\ P
r”
,,/ \\\
4 Ay
¢* I’ \\
L) *
1 L4 Cbz

Figure 1: lllustrative diagram of our model-agnostic meta-learning algorithm (MAML), which
optimizes for a representation 8 that can quickly adapt to new tasks.

» learn parameter initialisations (using one-shot framework)
» see Finn, Abbeel and Levine, 2017, arXiv:1703.03400
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Altering Faces: Style Learning
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Learning to Augment Data

sampled '~ ~
target e

*'_
wm@©©©@

sampled
delta
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new class
reference

% & sampled
reference

synthesized
new class
example

A~

from Schwartz et al, NeurlPS 2018, Delta-encoder

| 2

learn the variance, spread or
difference of typical
examples from related
domains

apply the
variance/spread/difference
to the new data

often uses GANs for the
learning

can be used as a hybrid of
weak supervision

e.g., adding estimated
bounding boxes to objects in
images
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Neural Machine Translation (NMT)

ZareMoodi, Buntine, Haffari ACL 2018

» Bilingually low-resource scenario: large amounts of bilingual

training data is not available.

IDEA: Use existing resources from other tasks and train one model

for all tasks using multi-task learning (MTL).

Machine Translation

:

| went home Encoder Decoder

Semantic Parsing

Obama was elected and Encoder Decoder

'

his voter celebrated

Syntactic Parsing

The burglar robbed the U
apartment

Named-Entity Recognition
Jim bought 300 shares of Decoder

Acme Corp. in 2006

the apartment

B-PER 0 00 0 B-ORG |-ORG 0 B-MISC
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NMT: Multi-Task Model
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» Block-1 to Block-3 are task independent components, ©€ the
shared common knowledge for MTL

> Routing-Network controls their use on a task to create

> task specific parameter is ©;
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Questions?
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