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ACML in Bangkok

I 18-20th November at Berkeley Hotel Pratunam
I colocated with ICONIP

I cheap flight to Bangkok not much more than a flight to
Brisbane

I always a high quality tutorial and invited speaker programme!

Deadlines:
I journal track (for ML Jnl) papers due 15th April
I conference track papers due 15th June
I workshop and tutorial proposals due mid July
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Australian ML Research School

I 29th June to 1st July
I hosted at RMIT

I near Central Station in Melbourne CBD
I intended for research students
I cheap registration for students!
I website and details TBD
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Background

I ML is now happening at a world-wind pace, with a phase shift
happening a few years ago:
I huge teams making rapid using extensive compute resources
I results/methods already outdated and superceded at their

point of publication
I an “academic singularity” in a sense

I ML is widely recognised as a key technology component
across many industries, also driving Data Science

I This is a big-picture/big-ideas talk.
I no time for detail
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Machine Learning is ...

Machine Learning is ...
Google Search Trends
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https://www.google.com/
https://trends.google.com/trends/explore?date=today%205-y&geo=US&q=machine%20learning


Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning
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What is Machine Learning?
(from Mactores Data Science Team)

from
https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/
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Machine Learning Timeline

from http://www.erogol.com/brief-history-machine-learning/

7 / 101



Deep Learning Timeline
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Machine Learning Tribes (circa 1990s)
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ML Timeline: Conferences

AAAI: American Association of Artificial Intelligence,
started 1980
I the second attempt, an earlier one done in 1960s

ICML: International Conference on Machine Learning,
started 1985

NeurIPS: Neural Information Processing Systems started 1988
—: in the interim ICML and NeurIPS merged in content

and the dominant paradigm become Bayesian neural
networks and nonparametric methods

ICLR: International Conference on Learning
Representations, started 2012
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ML Literature

I a lot of the good work comes from the application
community: vision, media, natural language

I preference to publish in conferences
I most work appears on arXiv.org before publication
I so use appropriately linked search engines (e.g.,

SemanticScholar.org not the publisher ones (e.g., Web of
Science, though this is great otherwise) to get arXiv cover
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https://arxiv.org/list/cs.LG/recent
https://www.semanticscholar.org/


Learning ML
I Python is the most common coding language
I generally need basic Probability, Linear Algebra and Calculus

to understand
I moves so fast, so better to look at recent text books,

e.g. Dive into Deep Learning
I most good books will be free online with PDF

I lots of great tutorials online
e.g. Machine Learning Summer Schools, browse recent ones and go

looking for slides and videos
I also at all the top conferences, ICML, NeurIPS, SIGKDD,

ACL, CVPR, and many more, usually with videos online
I for simple but uptodate introductions targetting amateurs, see

relevant sections on Medium.com
I Andrew Ng’s courses on Coursera.org generally considered

best MOOC intros
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http://d2l.ai/
http://mlss.cc/
https://medium.com/topic/machine-learning
https://www.coursera.org/courses?query=andrew%20ng
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Models

from the BackReaction blog by Sabine Hossenfelder

but we focus on models that are predictive about out targets of
interest
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http://backreaction.blogspot.com.au/2008/04/emergence-and-reductionism.html


Simple Example: Binomial Model

Task: estimate the frequency for a Boolean event given a
sequence S of length N in the form S ∈ {T ,F}N

Model: probability of a single T is θ
Statistics: nT is number of T s in S, nF is number of F s in S

Examples:
I probability θ that you have a malignant melanoma
I probability θ that the top card from a deck is an ace
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Binomial Model Prior
p(θ) = Γ(α + β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1

concentration=“prior count” = α + β, and mean=µ = α
α+β .
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Binomial Model Inference
p(S, θ) = Γ(α + β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1θnT (1− θ)nF

p(θ|S) = Γ(α + β + nT + nF )
Γ(α + nT )Γ(β + nF )θ

α+nT−1(1− θ)β+nF−1
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Binomial Model Inference, cont.
p(S, θ) = Γ(α + β)

Γ(α)Γ(β)θ
α−1(1− θ)β−1θnT (1− θ)nF

p(θ|S) = Γ(α + β + nT + nF )
Γ(α + nT )Γ(β + nF )θ

α+nT−1(1− θ)β+nF−1
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Hierarchical Models

I organise concepts into a hierarchy
I “share” model parts when learning to classify

e.g. recognising “leaves” is useful shared feature when learning to
classify trees, shrubs, flowering plants, etc.

I how can we design models for different tasks to do “sharing”?

I hierarchical Bayesian models implement the idea using a
tree-structured Bayesian network of parameters corresponding
to the hierarchy
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Hierarchical Bayesian Models
We have T “related” problems with data (Xt ,Yt).

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

Θ1 −ΘT : task specific parameters
ΘG : shared parameters

Θ̃1 − Θ̃T : task specific instantiation of shared parameters
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Knowledge-Based Reasoning
people use common-sense rea-
soning when doing classifica-
tion:
I school bus (in America)

is yellow and carries
children

I a single adult with
children may be their
teacher

I the kind of knowledge used is often different to that found in
standard knowledge-bases like DBPedia

I knowledge-bases are implemented as graphs in AI with objects
as nodes and relationships as arcs
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A Simple Causal Model

NB. this famous figure is due to Lauritzen and Spiegelhalter, 1989
(don’t blame me for implying Asia gives you tuberculosis!!)
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A Simple Correlational Model

from https://www.slideshare.net/VishnuYenganti/association-causation

NB. which relations are due to cause?
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Vision Understanding

How can we segment the image?
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Vision Understanding: Stereo

I Stereo gives us depth.
I Causality: neighbour pixels at different depth should be

different objects, so segment.
−→ the woman is at a different depth to others, so segment off

similar tricks can be applied to video with motion
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Using Causality: Example

Task: we want to collect data about car accidents. Which
variables should we collect?
I external car color?
I color of seats?
I air-conditioning?
I quality of tyres?

When choosing variables, we try and imagine a causal connection
from variable to cause of accident.
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Causality
I causality allows much simpler models of the world

I important technique for configuring learning problems in
medicine and science

I humans are very good with causal reasoning
I we infer causality based on time effects, controlled play, and

the simplicity it provides in understanding the world

I modelling causality is strongly related to modelling
probabilistic independence
I causal models yield the most comprehensive independence

statements
I involves the capability of modelling intervention, externally

fixing variables
I rather than just passive observation

NB. see Judea Pearl’s book “Causality”
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The Do Calculus: Interpretation

I for variable X , do(X ) represents the statement that X has
been set by (outside) intervention

I we seek to evaluate and simplify statements involving
I A⊥⊥B | do(X ),Y (independence)
I p(A |B, do(X )) (probability)

I given a graphical model G over variables U, interpret the
graph as causal, and the individual node probabilities
p(u|par(u)) as causal prescriptions
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The Do Calculus: Interpretation, cont.
Probability theory: Given a graphical model G over variables U,
consider p(A|B). Let anc(V ) be the ancestral set of V , then

p(A|B) = 1
Z

∑
anc(A∪B)\A∪B

 ∏
u∈anc(A∪B)

p(u|par(u))



Causal probability theory: Given a graphical model G over
variables U, consider p(A|B, do(X )) for X ⊆ B. Then

p(A|B, do(X )) = 1
Z

∑
anc(A∪B)\A∪B

 ∏
u∈anc(A∪B)\X

p(u|par(u))


=⇒ you eliminate terms

∏
x∈X p(x |par(x)) !

=⇒ Pearl’s 3 rules of do-calculus follow somewhat simply
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Using Causality

I Simple classification/regression tasks are usually configured by
experts:
I they use their own knowledge of causality to decide what

variables to use/collect
I We’re now developing:

I life-long learning
I multi-task learning

where hand-configuring by human experts cannot be done.
I More complex learning systems need to “self-configure” so

they will need to use causality.
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Bayes-Optimal Parameter Search

I Gaussian processes are a suped-up version of least squares
regression that allows:
I fitting non-linear functions
I point-wise estimates of uncertainty

I But they only work well in low dimensions.
I less than 6, so in R6

I By adding a exploration-exploitation affect, you can use them
to do “optimal non-linear optimisation”.
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Bayes-Optimal Optimisation
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Hyper-parameter Tuning

I Many learning algorithms have several hyper-parameters
I λ tradeoff in regularisation
I tree depth in XGBoost

I How do we set them?
I Use Gaussian process optimisation!
I Good packages in Python etc., exist
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Information Retrieval: Images

image search gives
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Information Retrieval becomes ML

Information Retrieval (IR): from a single query (image, text),
retrieve “best” matching documents. e.g. text/image search engine

I this is like learning from just one example!
I called zero/one-shot learning in Deep Neural Networks,

especially for images
I start of the-art in IR is deep neural networks!

I see SIGIR 2018 tutorial by Xu, He and Li
I to my knowledge IR techniques and one-shot researchers do

not intersect!
I Google has now installed BERT in their search.

I is a (text) counterpart technology for one-shot learning
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Active Learning

from kisspng.com “active learning machine learning”

WARNING: active learning is an old field, very fragmented, and no
good recent survey articles exist.
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Bayesian Theory TL;DR (skip)
I there are strong theoretical justifications for using

Bayesian methods
I betting arguments: Dutch books
I decision theory arguments: von Neumann-Morgenstern Axioms
I coherence arguments: Cox’s axioms

I but these ignore three key issues:
I computational complexity
I multi-agent reasoning
I model adequacy (the “truth” must be in the model family)

I of the kind that applied ML people well understand!

I and they don’t say you must *use* Bayesian methods
I just that you should be reasonable consistent in results with

Bayesian methods
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Applied Bayesian Methods (skip)
I in practice we do hybrids, compromises, and variations,

i.e., “applied Bayesian”
I like regularisation
I like ensembling
I so-called “empirical Bayes” (e.g., with cross validation)
I MDL and MML approaches

I while being cognizant of the three key issues

Bayesian methods are not an application technology.

They motivate new methods and give alternative intepreta-
tions of new methods developed otherwise.
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Metrics and Divergences (skip)
I Often times learning is represented as minimising a cost,

sometimes between the model and the empirical data
distribution.
I Given a data set {~x1, . . . , ~xN}:

pdata(~x) = 1
N

N∑
i=1

1~xi =~x

I To this a regularisation term may be added (to be
pseudo-Bayesian).

I So we seek to minimise a cost between a parameterised
probabilistic model p(~x |Φ) and the empirical data distribution

L (pdata(~x), p(~x |Φ))
I At the very least, L(·, ·) should be a proper scoring rule.
I To this a regularisation term may be added (to be

pseudo-Bayesian).
R(Φ) = ||Φ||2

38 / 101



Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex
Jensen-Shannon divergence is used

Total variation: (TV) in discrete domain X , is

TV (p, q) = max
x∈X
|p(x)− q(x)|

Others: mean square error, absolute error, ...

Example cost function:

KL (pdata(~x), p(~x |Φ)) + λ||Φ||2

39 / 101



Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex
Jensen-Shannon divergence is used

Total variation: (TV) in discrete domain X , is

TV (p, q) = max
x∈X
|p(x)− q(x)|

Others: mean square error, absolute error, ...

Example cost function:

KL (pdata(~x), p(~x |Φ)) + λ||Φ||2

39 / 101



f-Divergence (skip)
Is the class defined on probability functions p(·) and q(·) by

Df (p, q) =
∫

x
q(x) f

(p(x)
q(x)

)
dx ,

= sup
T (·)

(
Ex∼p

[
T (x)

]
− Ex∼p

[
f ∗(T (x))

])
for convex univariate function f (·), its conjugate f ∗(·) and T (·) is
any function suitable for the domain of f ∗(·).

I second line (conjugate formulation) due to Nguyen,
Wainwright, Jordan, 2010

I generally requires p(·) and q(·) have the same domain (are
zero for the same arguments) −→ models must fit truth!

I includes both K-L and TV as special cases, and also J-S
divergence (symmetrised K-L)
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f-Divergence: Examples

from Nowizin’s GAN tutorial, MLSS 2018, Madrid

Most metrics have large tables of alternatives like this.
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Bregman Divergence (skip)

Is the class defined on discrete probability vectors ~p and ~q as

BF (~p, ~q) = F (~p)− F (~q)− (~p − ~q)T∇F (~q)

for convex vector function F (·).
I includes K-L and a variation gives TV
I intersection with f-divergence is the class of alpha-divergences

or Rényi entropies
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Transport Metrics (skip)

Is the class defined on probability functions p(·) and q(·), given
distance d(·, ·) sharing the same domain

Wd(·,·)(p, q) = sup
T (·)

∣∣Ex∼p
[
T (x)

]
− Ex∼q

[
T (x)

]∣∣
where T (·) must satisfy |T (x)− T (y)| ≤ d(x , y).
I for standard Euclidean metric, this means T (·) is 1-Lipschitz

I coarsely implemented with deep networks using “weight
clipping”

I includes TV as the trivial case where d(x , y) = 1x=y
I rather similar in form to second variation of f-divergence

(indeed, they are the same for TV)
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Metrics and Divergences, cont.
I An embarrassment of riches!
I But what guidance do we have regards the best choice?

I theory is more about relationships and general properties

I K-L divergence where the first argument is the empirical data
distribution is equivalent to maximum likelihood.
I an old result from the physicists

I Reasonable criteria, based on large sample theory, is they be
proper scoring rules.
I most differentiable cost functions are, e.g., not TV!

I Far less guidance in the small sample case.
I Bayesian ideas can help!

I Some applications are not model fitting but data
summarisation.
e.g., hierarchical clustering
I so motivation for selection of cost is completely different
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The K-L Variational Setup (skip)
The variational method, also called mean field is based on the
following information theoretic identity:

log p(x|Θ)− KL (q(z|x)‖p(z|x,Θ)) (1)
= Eq()

[
log p(x, z|Θ)

]
+ H(q()) (2)

I data is x, latent variables z, model parameters Θ
I q(z|x) is an introduced probability density and we can vary

how we like

I theoreticians have tried to reproduce/generalise this to other
divergence/metric paradigms
I haven’t succeeded
I the relationships between probability, independence and K-L

are unique!

45 / 101



The K-L Variational Setup (skip)

The variational identity:

log p(x|Θ)− KL (q(z|x)‖p(z|x,Θ)) (1)
= Eq()

[
log p(x, z|Θ)

]
+ H(q()) (2)

I To maximise p(x|Θ), therefore repeatedly
1. increase (1): get q(z|x) closer to p(z|x,Θ) in K-L
2. increase (2): by optimising/gradient-descent w.r.t. Θ

I for exponential family, Step 1 & 2 are usually simple
I when q(z|x) = p(z|x,Θ), a local maxima is achieved!
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A Probabilistic Model (ML circa 2000s)

from Zhao etal. KAIS 2017

Probabilistic model for fancy topic modelling: MetaLDA.
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A Probabilistic Model, cont.
Deriving the posterior:

Deriving a Gibbs sampler:

A complex task, takes advanced statistical training!
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What did We Learn from Old ML?
I models as first-class objects

e.g., Bayesian & Markov networks, neural networks
I how to do linear and partitioning models well

e.g., XGBoost, online LDA, exponential family, additive models
I how to augment them with fancy mathematical tricks

e.g., kernels, non-parametrics (infinite vectors)
I cost functions and statistical ML theory

e.g., bias-variance tradeoff, regularisation, metrics and divergences,
variational methods

I paradigms
e.g., online learning, active learning, transfer learning

Bengio et al.s’ “Representation Learning: A Review and New
Perspectives” 2013 IEEE PAMI article has a nice summary!
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How Does Deep Learning Innovate?
I Model/Spec driven black-box algorithms ease the workload of

developers.
I machine learning without statistics!

I Porting down to GPUs or multi-core allows real speed.
I Learning representations and discovering higher order

concepts.
I convolutions, structures, sequences, ...

I High capacity makes them very flexible in fitting and does
implicit parallel search.

I Allows “modelling in the large”:
I learning to learning
I multi-task learning
I imitation learning
I convolutions, structures, sequences, ...

NB. we can do some of this with hierarchical Bayesian models
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The Old Versus The New: I

The Old: need experts to carefully design algorithms:
I experts need knowledge of distributions and techniques like

variational algorithms or Gibbs samplers to construct
algorithms

I statistical knowledge intensive

The New: (semi) automatic black-box algorithms:
I automatic differentiation, ADAM optimisation, etc.
I port down to GPUs or multi-core, etc.
I easier to scale algorithms
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The Old Versus The New: II

The Old: modelling in the small:
I huge range of components can be used
I individual components need care and attention for algorithm

development

The New: modelling in the large:
I whole blocks can be composed
I general purpose methods deal with it
I restricted in allowable components

I use concrete distribution and reparameterisation trick
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The Old Versus The New: III

The Old: components often directly interpretable:
I parameter vectors can have easy interpretation

The New: black-box model requires “explanation” support:
I cannot interpret the model
I need techniques like LIME and SHAP to intepret results
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Making Deep Learning Work
Cost function example:

KL (pdata(~x), p(~x |Φ)) + λ||Φ||2

I cost function has an error term and a regularisation term
I use a coding language such as TensorFlow to specify an

architecture (the model with parameters Φ)
I automatic differentation can be used to generate code for

derivatives
I hooked up to a self-tuning and stochastic variation of gradient

descent

The cost function is approximately minimised semi-
automatically, so the effort is in specifying the architecture
and the cost function.
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Deep Representations

from https://thedatascientist.com/what-deep-learning-is-and-isnt/

IDEA: different layers of the network “learn” alternative
representations of elements in the image
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A Simple Network
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A Bigger Network
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A Real Network from Nvidia

I CNN architecture for
driving a car from
2016

I 27M connections but
250k parameters

I convolutions mean
there are less
parameters than
connections

I the working system is
compiled from
high-level
architectural specs

58 / 101



Symmetric and Sparsity in Modelling

Observation: in 2005 I tried adding complex word priors to LDA
that had the effect of breaking the symmetry in the model=⇒ fitting was terrible despite being a good prior!

Model symmetry: identical blocks in a model with random
initialisation allow alternatives to appear organically

Model sparsity: many alternatives act as a form of implicit
parallelism

These two constructs help explain a lot of the surprising empirical
observations where deep NNs seemingly defy statistical learning
theory
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Data Augmentation

from Ahmad, Muhammad and Baik, PLoS ONE 2017

IDEA: classified data is hard to get, so lets generate new data!
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Data Augmentation: MNIST

I technique first used in Zipcode
recognition for the US Post

I images can be rotated, shifted,
thinned, etc.
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Data Augmentation, MNIST Discussion

I Examples:
I for digit recognition from images, we want invariance under (1)

small shifts, (2) small rotations, (3) thickness changes.
I for bank loan assessment, we want monotonicity in (1) salary

and (2) bank balance, but not age
I It is hard to design these in as invariants of the resultant

classification algorithm.
I It is easy to do data augmentation: generate 10 variants of

each digit to use for training.
I Recent differential/regularisation techniques can also

“encourage” invariants and monotonicity to hold
I also useful for introducing fairness in learning
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Data Augmentation, Discussion

I We need to identify an invariant in our data we want to hold.
e.g. For text, we could replace synonyms, convert cases (active to

passive, past to future tense), etc.
I We need an algorithm to apply changes to the data reflecting

the invariant.
I Probabilistic model, for the augmentation distribution Aug,

treats it like a convolution:

p(yi | xi ,Θ) standard data likelihood∫
x ′

p(yi | x ′i ,Θ)p(x ′|xi ,Aug) dx ′ augmented data likelihood
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Multi-Task Learning: Sharing

I 3 tasks A, B and C
I share lower layers of the network as “pattern” features
I upper layers specialise for tasks
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Feature Sharing

figure

from Bhattacharjee et al, ArXiv, 2019

Shows amount of feature sharing done by a multi-task object
categorisation system. In this case, level of sharing was learnt.
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Pre-Training: Initialisation

1. train the network initially on a very large set of “somewhat”
related images

2. leave the values as an initialisation
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Pre-Training: Fix Features

1. train the network initially on a very large set of “somewhat”
related images

2. fix the lower levels of the network
3. for a new, different, and smaller set of specialised data, tune

the upper network to better fit the new data
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Pre-Training: Fix Features, cont.

1. train the network initially on a very large set of “somewhat”
related images

2. fix the lower levels of the network
3. for a new, different, and smaller set of specialised data, tune

the upper network to better fit the new data
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Pre-Training Method

from Noroozi, Vinjimoor, Favaro, Pirsiavash, CVPR 2018
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Pre-Training: Discussion

I pre-training is a way of initialising and/or a way of providing
lower-level features
I able to make use of very large unlabelled datasets for text and

images
I we pre-train on a large set of data once, and reuse the

pre-trained model many times
I for lower-level features, you would hope the tasks have

“lower-level” similarity
I if you have less training data for your new task, leave more of

the lower-level layers intact
I reduce the capacity of the network to be tuned, since there is

less data available to do it
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Pre-Training: Discussion, cont.

How useful are these three images sets for subsequently learning
flowering plants?
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Self-supervision

I to do pre-training, we need a task for learning
I embedding methods are an early precursor
I pre-training should build lower-level features useful for

subsequent target classes

Self-supervision: an artificial task created for the purposes of
learning a network useful as a pre-trained network.
I called “self” supervised since the task is created automatically
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Self-supervision, cont.
Self-supervision: an artificial task created for the purposes of
learning a network useful as a pre-trained network.

I examples for image recognition:
I color a B/W image
I fill-in missing patches (“image in-painting”)
I object classification from very broad image class

I examples for text classification:
I predict missing words
I forwards and backwards order

I generally, the self-supervision task should be (1) richer and
more refined than or (2) similar to subsequent target tasks

I fundamentally different to component models builts as a
latent variable models (e.g., matrix factorisation)
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Pseudo-likelihood and Self-supervision
A pseudo-likelihood (Besag 1975) is an approximation to the joint
probability distribution of a collection of random variables using
univariate conditionals:

p̃(X |Θ) ≡
∏
x∈X

p(x |X \ {x},Θ)

I it is easily computed because the individual conditionals can
usually be easily marginalised.
I used to train Markov networks in neural networks

I Maximising pseudo-likelihood is known to be consistent with
maximising likelihood in the limit of infinite data.

I Pseudo-likelihood can be viewed as a simplified theoretical
view of self-supervision.

I But an alternative view is of representation learning.
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Artificial Faces

Early Generative Adversarial Networks (GANs) were trained to
generate new faces given 1000s of examples.
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Generative Deep Learning

~z

~x Θ

φ

I the Generative Adversarial Networks
(GAN) and Variational Autoencoder
(VAE) implement the same model but
with different algorithms
I model is on the left
I GAN doesn’t explicitly find ~z during

training

I this is a generalisation of LDF, PMF, ICA,
PCA, etc., all the matrix factorization
models

I in our experience, individual elements of
the latent vector ~z are encouraged to be
independent
I more independence means higher

capacity model
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Variational Autoencoder, cont.

z

x Θ

φ

I The original VAE algorithm is similar to
the standard variational method
I q(Z |X ) is fit using Equation (2), not (1)
I so in principle it can optimise
I surprisingly good scaling properties using

amortisation
I very good topic model variants exist

I needed Bayesian guys to do a hybrid
Deep-Bayesian method
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Generative Deep Learning, cont.

z

x Θ

φ

I the original GAN is (almost) equivalent to
minimising conjugate formulation of J-S
divergence between data and model
I Nowozin’s GAN tutorial at MLSS 2018
I data distribution in this case is

p(x |data) = 1
I

I∑
i=1

δxi =x

I is the adversarial framework a mathematical
digression?

I applying K-L divergence to same data
distribution is equivalent to maximum
likelihood!

I GANs are judged completely differently to other
learned models

I state-of-the-art GANs use transport metrics and
ensembles (I’m told)
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Encoder-Decoder Versus VAE

h

X Θ

φ

right figure from Wikipedia

The encoder-decoder framework can be interpreted probabilistically
as a GAN/VAE type model where the latent variable ~h is discrete
instead of real-valued.
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Disentangling Concepts

I disentangling is a term popularised in Bengio, Courville, and
Vincent’s classic 2012, IEEE Trans PAMI paper

I term is somewhat vaguely defined in the literature!
I we want discovered latent variables of a GAN/VAE to be

“independent causally” w.r.t. the task
e.g. consider the task of digit recognition

I color, rotation, shift, thickness, font style are independent
dimensions we would like to discover that are irrelevant to the
digit classification

−→ disentangle them!
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Graph Embeddings

I techniques similar to word embeddings have been developed
for graphs

I similar techniques apply: cost functions, negative sampling,
I nodes in graphs also have extensive side information

I “hospital patient” node in a graph may have their
socio-economic data attached as an attribute of the node
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Consider Object Recognition

image from Heiko Hoffmann, HRL Laboratories, DARPA 2019

Wouldn’t it be good if we could learn all the different object
classes with just a few examples!
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One-Shot Learning

from

Karlinsky et al, CVPR 2019

To do large scale object recognition and scene understanding in
images, it would be good to have one-shot (or “few-shot”) learning
working.
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One-Shot Learning, cont.

zero-shot: recognise given a description rather than an example,
i.e., this is IR

few-shot: recognise from a few examples,
i.e., this is data poor learning

I one/few-shot have a wide variety of approaches
I research largely in image recognition
I current focus is the continuum between 0-1-few-many
I requires a trade-off of prior knowledge and data
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Covariate Shift

figure

from Eisenberg, Embedded Intelligence, DARPA 2019

Changing the context or background distributions, makes
recognition different.
Called covariate shift, and a form of domain adaptation.
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Covariate Shift, cont.

Problem setup: target variables or input data changes in
distribution; for prediction of yi from features xi

I in covariate shift, p(xi ) changes, not p(yi |xi )
I however, new data after shift will occur outside the “comfort

zone” of the initial trained system
I if training builds a causal model, it should be robust to

covariate shift
I but rarely done!
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Task Types
(my take on the old ML version)

Shift: target variables or input data changes in distribution;
for prediction of yi from features xi :

Online: learning and evaluation is done incrementally
Multi-task: several/many related tasks are done
Life-long: new, somewhat related tasks are constantly appearing

Human in the Loop: during learning, varied forms of human
involvement:
I can choose to label via active learning
I similar to crowd-sourcing (i.e., a flawed oracle)

Recognition: identifying an object within a broader context
I objects in vision, named-entities in text

learning to learn is usually situated in these richer learning tasks
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Weak Supervision

figure from Stephen Bach, Brown University, DARPA 2019

Different kinds of “weak” information about a concept can be used
to support learning −→ weak supervision.
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Semi-Supervised Learning
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Entropy Minimisation for Semi-Supervised
Learning
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Supervision Types
(my take on the old ML version)

Supervised: classes or target variables for prediction are supplied
with the data

Unsupervised: no supervision is given at all; learn about the data
generally

Semi-supervised: classes or target variables for prediction are
supplied with the data for only a (smaller) subset of
data

Weakly supervised: incomplete or approximate supervision supplied
with the data

Self-supervised: an artificial task is created for the purposes of
pre-training
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Background Knowledge Types
Related tasks: useful for selection of data for pre-training and

related systems for domain adaptation, ...
Features: causal relationships, invariances to support

augmentation, as trained by pre-training, ...
Data augmentation: invariants, monotonicities other properties of

data ...
Weak supervision: special case of related tasks, useful for partial,

initial or filtering models, ...
Task descriptions: used for weak-supervision, selection of related

tasks, ...
Regularisation: entropy minimisation, consistency regularisation,

prior rate alignment, ...

These often work orthogonally to tasks
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Meta-Learning

Meta-Learning: where learning is applied to support the task of
learning itself.

I meta learning strongly inspired by the human experience
I my motivation for entering Machine Learning in 1984

I is patchwork of different techniques, not a single consistent
method
I reinforcement learning
I hierarchical Bayes
I architectural tricks in deep learning

I large groups are building pipelines and architecture
I one of a few key “hot” areas in ML
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Multi-Task Learning (MTL)
We can rebrand hierarchical Bayesian modelling as multi-task
learning.

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

Θ1 −ΘT : task specific parameters
ΘG : shared parameters

Θ̃1 − Θ̃T : task specific instantiation of shared parameters
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Simple Meta-Learning

Shared parameters ΘG could be:
I hyper-parameters of optimiser (e.g., step size)
I parameter initialisations
I lower-level part of a deep NN

Each of these has a huge recent literature!
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Model Agnostic Meta-Learning

I learn parameter initialisations (using one-shot framework)
I see Finn, Abbeel and Levine, 2017, arXiv:1703.03400
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Altering Faces: Style Learning
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Learning to Augment Data

from Schwartz et al, NeurIPS 2018, Delta-encoder

I learn the variance, spread or
difference of typical
examples from related
domains

I apply the
variance/spread/difference
to the new data

I often uses GANs for the
learning

I can be used as a hybrid of
weak supervision
e.g., adding estimated
bounding boxes to objects in
images
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Neural Machine Translation (NMT)
ZareMoodi, Buntine, Haffari ACL 2018

I Bilingually low-resource scenario: large amounts of bilingual
training data is not available.

IDEA: Use existing resources from other tasks and train one model
for all tasks using multi-task learning (MTL).
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NMT: Multi-Task Model

I Block-1 to Block-3 are task independent components, ΘG the
shared common knowledge for MTL

I Routing-Network controls their use on a task to create Θ̃t
I task specific parameter is Θt
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Questions?
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