Introduction to Machine Learning

Wray Buntine Monash University http://Bayesian-Models.org

6th February, 2020

ACML in Bangkok

18-20th November at Berkeley Hotel Pratunam

- colocated with ICONIP
- cheap flight to Bangkok not much more than a flight to Brisbane
- always a high quality tutorial and invited speaker programme!

Deadlines:

- ▶ journal track (for ML Jnl) papers due 15th April
- conference track papers due 15th June
- workshop and tutorial proposals due mid July

Australian ML Research School

- 29th June to 1st July
- hosted at RMIT
 - near Central Station in Melbourne CBD
- intended for research students
- cheap registration for students!
- website and details TBD

Background

- ML is now happening at a world-wind pace, with a phase shift happening a few years ago:
 - huge teams making rapid using extensive compute resources
 - results/methods already outdated and superceded at their point of publication
 - an "academic singularity" in a sense
- ML is widely recognised as a key technology component across many industries, also driving Data Science
- This is a big-picture/big-ideas talk.
 - no time for detail

Machine Learning is ...

Q machine learning is

Google Search

I'm Feeling Lucky

Machine Learning is ...

Google Search Trends

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

What is Machine Learning?

(from Mactores Data Science Team)

from http://www.erogol.com/brief-history-machine-learning/

Deep Learning Timeline

Machine Learning Tribes (circa 1990s)

What are the five tribes?

Source: Pedro Domingos, The Master Algorithm, 2015

ML Timeline: Conferences

AAAI: American Association of Artificial Intelligence, started **1980**

the second attempt, an earlier one done in 1960s

ICML: International Conference on Machine Learning, started **1985**

NeurIPS: Neural Information Processing Systems started 1988

- --: in the interim ICML and NeurIPS merged in content and the dominant paradigm become *Bayesian neural networks and nonparametric methods*
- ICLR: International Conference on Learning Representations, started **2012**

ML Literature

- a lot of the good work comes from the application community: vision, media, natural language
- preference to publish in conferences
- most work appears on arXiv.org before publication
- so use appropriately linked search engines (e.g., <u>SemanticScholar.org</u> not the publisher ones (e.g., Web of Science, though this is great otherwise) to get arXiv cover

Learning ML

- Python is the most common coding language
- generally need basic Probability, Linear Algebra and Calculus to understand
- moves so fast, so better to look at recent text books,
 - e.g. Dive into Deep Learning
 - most good books will be free online with PDF
- lots of great tutorials online
 - e.g. <u>Machine Learning Summer Schools</u>, browse recent ones and go looking for slides and videos
 - also at all the top conferences, ICML, NeurIPS, SIGKDD, ACL, CVPR, and many more, usually with videos online
- for simple but uptodate introductions targetting amateurs, see relevant sections on <u>Medium.com</u>
- Andrew Ng's courses on <u>Coursera.org</u> generally considered best MOOC intros

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

Models

from the BackReaction blog by Sabine Hossenfelder

but we focus on models that are predictive about out targets of interest

Simple Example: Binomial Model

Task: estimate the frequency for a Boolean event given a sequence S of length N in the form $S \in \{T, F\}^N$ Model: probability of a single T is θ Statistics: n_T is number of Ts in S, n_F is number of Fs in S

Examples:

- probability θ that you have a malignant melanoma
- probability θ that the top card from a deck is an ace

Binomial Model Prior

$$p(heta) = rac{\mathsf{\Gamma}(lpha+eta)}{\mathsf{\Gamma}(lpha)\mathsf{\Gamma}(eta)} heta^{lpha-1}(1- heta)^{eta-1}$$

concentration="prior count" = $\alpha + \beta$, and mean= $\mu = \frac{\alpha}{\alpha + \beta}$.

Binomial Model Inference

Binomial Model Inference, cont.

0

0.0

0.4

0.2

0

0.0

0.2

A

0

0.0

0.2

0.4

0.4

Hierarchical Models

- organise concepts into a hierarchy
- "share" model parts when learning to classify
 - e.g. recognising "leaves" is useful shared feature when learning to classify trees, shrubs, flowering plants, etc.
- how can we design models for different tasks to do "sharing"?

Hierarchical Models

- organise concepts into a hierarchy
- "share" model parts when learning to classify
 - e.g. recognising "leaves" is useful shared feature when learning to classify trees, shrubs, flowering plants, etc.
- how can we design models for different tasks to do "sharing"?
- hierarchical Bayesian models implement the idea using a tree-structured Bayesian network of parameters corresponding to the hierarchy

Hierarchical Bayesian Models

We have T "related" problems with data (X_t, Y_t) .

 $\Theta_1 - \Theta_T$: task specific parameters

 Θ^G : shared parameters

 $\tilde{\Theta}_1 - \tilde{\Theta}_{\mathcal{T}}$: task specific instantiation of shared parameters

Knowledge-Based Reasoning

people use common-sense reasoning when doing classification:

- school bus (in America) is yellow and carries children
- a single adult with children may be their teacher

Knowledge-Based Reasoning

people use common-sense reasoning when doing classification:

- school bus (in America) is yellow and carries children
- a single adult with children may be their teacher

the kind of knowledge used is often different to that found in standard knowledge-bases like DBPedia

Knowledge-Based Reasoning

people use common-sense reasoning when doing classification:

- school bus (in America) is yellow and carries children
- a single adult with children may be their teacher
- the kind of knowledge used is often different to that found in standard knowledge-bases like DBPedia
- knowledge-bases are implemented as graphs in AI with objects as nodes and relationships as arcs

A Simple Causal Model

NB. this famous figure is due to Lauritzen and Spiegelhalter, 1989 (don't blame me for implying Asia gives you tuberculosis!!)

A Simple Correlational Model

from https://www.slideshare.net/VishnuYenganti/association-causation

NB. which relations are due to cause?

Vision Understanding

How can we segment the image?

Vision Understanding: Stereo

- Stereo gives us depth.
- Causality: neighbour pixels at different depth should be different objects, so segment.
 - \longrightarrow the woman is at a different depth to others, so segment off

Vision Understanding: Stereo

- Stereo gives us depth.
- Causality: neighbour pixels at different depth should be different objects, so segment.
 - \longrightarrow the woman is at a different depth to others, so segment off

similar tricks can be applied to video with motion

Using Causality: Example

Task: we want to collect data about car accidents. Which variables should we collect?

- external car color?
- color of seats?
- air-conditioning?
- quality of tyres?

Using Causality: Example

Task: we want to collect data about car accidents. Which variables should we collect?

- external car color?
- color of seats?
- air-conditioning?
- quality of tyres?

When choosing variables, we try and imagine a causal connection from variable to cause of accident.

Causality

- causality allows much simpler models of the world
 - important technique for configuring learning problems in medicine and science
- humans are very good with causal reasoning
 - we infer causality based on time effects, controlled play, and the simplicity it provides in understanding the world

Causality

- causality allows much simpler models of the world
 - important technique for configuring learning problems in medicine and science
- humans are very good with causal reasoning
 - we infer causality based on time effects, controlled play, and the simplicity it provides in understanding the world
- modelling causality is strongly related to modelling probabilistic independence
 - causal models yield the most comprehensive independence statements
- involves the capability of modelling intervention, externally fixing variables
 - rather than just passive observation

Causality

- causality allows much simpler models of the world
 - important technique for configuring learning problems in medicine and science
- humans are very good with causal reasoning
 - we infer causality based on time effects, controlled play, and the simplicity it provides in understanding the world
- modelling causality is strongly related to modelling probabilistic independence
 - causal models yield the most comprehensive independence statements
- involves the capability of modelling intervention, externally fixing variables
 - rather than just passive observation

The Do Calculus: Interpretation

- for variable X, do(X) represents the statement that X has been set by (outside) intervention
- we seek to evaluate and simplify statements involving

$$\blacktriangleright A \bot B \mid do(X), Y$$

$$\blacktriangleright p(A \mid B, do(X))$$

(independence) (probability)

given a graphical model G over variables U, interpret the graph as causal, and the individual node probabilities p(u|par(u)) as causal prescriptions
The Do Calculus: Interpretation, cont.

Probability theory: Given a graphical model *G* over variables *U*, consider p(A|B). Let anc(V) be the ancestral set of *V*, then

$$p(A|B) = \frac{1}{Z} \sum_{anc(A \cup B) \setminus A \cup B} \left(\prod_{u \in anc(A \cup B)} p(u|par(u)) \right)$$

Causal probability theory: Given a graphical model *G* over variables *U*, consider p(A|B, do(X)) for $X \subseteq B$. Then

$$p(A|B, do(X)) = \frac{1}{Z} \sum_{anc(A \cup B) \setminus A \cup B} \left(\prod_{u \in anc(A \cup B) \setminus X} p(u|par(u)) \right)$$

 \implies you eliminate terms $\prod_{x \in X} p(x|par(x))$!

The Do Calculus: Interpretation, cont.

Probability theory: Given a graphical model *G* over variables *U*, consider p(A|B). Let anc(V) be the ancestral set of *V*, then

$$p(A|B) = \frac{1}{Z} \sum_{anc(A\cup B)\setminus A\cup B} \left(\prod_{u \in anc(A\cup B)} p(u|par(u)) \right)$$

Causal probability theory: Given a graphical model *G* over variables *U*, consider p(A|B, do(X)) for $X \subseteq B$. Then

$$p(A|B, do(X)) = \frac{1}{Z} \sum_{anc(A \cup B) \setminus A \cup B} \left(\prod_{u \in anc(A \cup B) \setminus X} p(u|par(u)) \right)$$

 $\implies \text{you eliminate terms } \prod_{x \in X} p(x|par(x)) \text{ !}$ $\implies \text{Pearl's 3 rules of do-calculus follow somewhat simply}$

Using Causality

Simple classification/regression tasks are usually configured by experts:

- they use their own knowledge of causality to decide what variables to use/collect
- We're now developing:
 - life-long learning
 - multi-task learning

where hand-configuring by human experts cannot be done.

More complex learning systems need to "self-configure" so they will need to use causality.

Bayes-Optimal Parameter Search

Gaussian processes are a suped-up version of least squares regression that allows:

- fitting non-linear functions
- point-wise estimates of uncertainty
- But they only work well in low dimensions.
 - \blacktriangleright less than 6, so in \mathcal{R}^6

By adding a exploration-exploitation affect, you can use them to do "optimal non-linear optimisation".

Bayes-Optimal Optimisation

t = 3

t = 4

Hyper-parameter Tuning

Many learning algorithms have several hyper-parameters

- λ tradeoff in regularisation
- tree depth in XGBoost
- How do we set them?
- Use Gaussian process optimisation!
- Good packages in Python etc., exist

Information Retrieval: Images

SIMILAR IMAGES

YMCA Wanakita: S... blogspot.com Superintendent co... My Edmonds News

image search gives

Rentrée: les nouvel... onfr.tfo.org

Corvallis schools b...

The Daily Item

Names chosen for ... www.hometownso...

Information Retrieval becomes ML

Information Retrieval (IR): from a single query (image, text), retrieve "best" matching documents. e.g. text/image search engine

- this is like learning from just one example!
- called zero/one-shot learning in Deep Neural Networks, especially for images
- start of the-art in IR is deep neural networks!
 - see SIGIR 2018 tutorial by Xu, He and Li
 - to my knowledge IR techniques and one-shot researchers do not intersect!
- Google has now installed BERT in their search.
 - is a (text) counterpart technology for one-shot learning

Active Learning

from kisspng.com "active learning machine learning"

WARNING: active learning is an old field, very fragmented, and no good recent survey articles exist.

Bayesian Theory TL;DR (skip)

- there are strong theoretical justifications for using Bayesian methods
 - betting arguments: Dutch books
 - decision theory arguments: von Neumann-Morgenstern Axioms
 - coherence arguments: Cox's axioms
- but these ignore three key issues:
 - computational complexity
 - multi-agent reasoning
 - model adequacy (the "truth" must be in the model family)

of the kind that applied ML people well understand!

Bayesian Theory TL;DR (skip)

- there are strong theoretical justifications for using Bayesian methods
 - betting arguments: Dutch books
 - decision theory arguments: von Neumann-Morgenstern Axioms
 - coherence arguments: Cox's axioms
- but these ignore three key issues:
 - computational complexity
 - multi-agent reasoning
 - model adequacy (the "truth" must be in the model family)
- of the kind that applied ML people well understand!
- ▶ and they don't say you must *use* Bayesian methods
 - just that you should be reasonable consistent in results with Bayesian methods

Applied Bayesian Methods (skip)

- in practice we do hybrids, compromises, and variations, i.e., "applied Bayesian"
 - like regularisation
 - like ensembling
 - so-called "empirical Bayes" (e.g., with cross validation)
 - MDL and MML approaches
- while being cognizant of the three key issues

Applied Bayesian Methods (skip)

 in practice we do hybrids, compromises, and variations, i.e., "applied Bayesian"

- like regularisation
- like ensembling
- so-called "empirical Bayes" (e.g., with cross validation)
- MDL and MML approaches
- while being cognizant of the three key issues

Bayesian methods are not an application technology.

They motivate new methods and give alternative intepretations of new methods developed otherwise.

Metrics and Divergences (skip)

- Often times learning is represented as minimising a cost, sometimes between the model and the empirical data distribution.
 - Given a data set $\{\vec{x}_1, \ldots, \vec{x}_N\}$:

$$p_{data}(ec{x}) = rac{1}{N}\sum_{i=1}^N \mathbb{1}_{ec{x}_i=ec{x}}$$

- To this a regularisation term may be added (to be pseudo-Bayesian).
- So we seek to minimise a cost between a parameterised probabilistic model $p(\vec{x}|\Phi)$ and the empirical data distribution

$$L(p_{data}(\vec{x}), p(\vec{x}|\Phi))$$

- At the very least, $L(\cdot, \cdot)$ should be a proper scoring rule.
- To this a regularisation term may be added (to be pseudo-Bayesian).

$$\mathsf{R}(\mathbf{\Phi}) = ||\mathbf{\Phi}||^2$$

Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex Jensen-Shannon divergence is used Total variation: (TV) in discrete domain X, is

$$TV(p,q) = \max_{x \in X} |p(x) - q(x)|$$

Others: mean square error, absolute error, ...

Metrics and Divergences, Base Cases

K-L divergence: though sometimes the more complex Jensen-Shannon divergence is used Total variation: (TV) in discrete domain X, is

$$TV(p,q) = \max_{x \in X} |p(x) - q(x)|$$

Others: mean square error, absolute error, ...

Example cost function:

$$\mathit{KL}(\mathit{p_{data}}(ec{x}), \mathit{p}(ec{x}|\Phi)) + \lambda ||\Phi||^2$$

f-Divergence (skip)

Is the class defined on probability functions $p(\cdot)$ and $q(\cdot)$ by

$$D_f(p,q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx ,$$

=
$$\sup_{T(\cdot)} (\mathsf{E}_{x \sim p}[T(x)] - \mathsf{E}_{x \sim p}[f^*(T(x))])$$

for convex univariate function $f(\cdot)$, its conjugate $f^*(\cdot)$ and $T(\cdot)$ is any function suitable for the domain of $f^*(\cdot)$.

f-Divergence (skip)

Is the class defined on probability functions $p(\cdot)$ and $q(\cdot)$ by

$$D_f(p,q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx ,$$

=
$$\sup_{T(\cdot)} \left(\mathsf{E}_{x \sim p}[T(x)] - \mathsf{E}_{x \sim p}[f^*(T(x))]\right)$$

for convex univariate function $f(\cdot)$, its conjugate $f^*(\cdot)$ and $T(\cdot)$ is any function suitable for the domain of $f^*(\cdot)$.

 second line (conjugate formulation) due to Nguyen, Wainwright, Jordan, 2010

f-Divergence (skip)

Is the class defined on probability functions $p(\cdot)$ and $q(\cdot)$ by

$$D_f(p,q) = \int_x q(x) f\left(\frac{p(x)}{q(x)}\right) dx ,$$

=
$$\sup_{T(\cdot)} (\mathsf{E}_{x \sim p}[T(x)] - \mathsf{E}_{x \sim p}[f^*(T(x))])$$

for convex univariate function $f(\cdot)$, its conjugate $f^*(\cdot)$ and $T(\cdot)$ is any function suitable for the domain of $f^*(\cdot)$.

- second line (conjugate formulation) due to Nguyen, Wainwright, Jordan, 2010
- ▶ generally requires p(·) and q(·) have the same domain (are zero for the same arguments) → models must fit truth!
- includes both K-L and TV as special cases, and also J-S divergence (symmetrised K-L)

f-Divergence: Examples

Name	$D_f(P \ Q)$	Generator $f(u)$
Total variation	$rac{1}{2}\int \left p(x)-q(x) ight \mathrm{d}x$	$\frac{1}{2} u-1 $
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d}x$	$u \log u$
Reverse Kullback-Leibler	$\int q(x) \log rac{\dot{q}(x)}{p(x)} \mathrm{d}x$	$-\log u$
Pearson χ^2	$\int \frac{(q(x)-p(x))^2}{p(x)} dx$	$(u - 1)^2$
Neyman χ^2	$\int \frac{(p(x)-q(x))^2}{q(x)} \mathrm{d}x$	$\frac{(1-u)^2}{u}$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)} ight)^2 \mathrm{d}x$	$\left(\sqrt{u}-1\right)^2$
Jeffrey	$\int (p(x) - q(x)) \log \left(\frac{p(x)}{q(x)}\right) dx$	$(u-1)\log u$
Jensen-Shannon	$\frac{1}{2} \int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} dx$	$-(u+1)\log \tfrac{1+u}{2} + u\log u$
Jensen-Shannon-weighted	$\int p(x)\pi \log \frac{p(x)}{\pi p(x) + (1-\pi)q(x)} + (1-\pi)q(x) \log \frac{q(x)}{\pi p(x) + (1-\pi)q(x)} \mathrm{d}x$	$\pi u \log u - (1 - \pi + \pi u) \log(1 - \pi + \pi u)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x)+q(x)} + q(x) \log \frac{2q(x)}{p(x)+q(x)} \mathrm{d}x - \log(4)$	$u\log u - (u+1)\log(u+1)$
$\alpha \text{-divergence} \ (\alpha \notin \{0,1\})$	$\frac{1}{\alpha(\alpha-1)} \int \left(p(x) \left[\left(\frac{q(x)}{p(x)} \right)^{\alpha} - 1 \right] - \alpha(q(x) - p(x)) \right) \mathrm{d}x$	$\tfrac{1}{\alpha(\alpha-1)}\left(u^\alpha-1-\alpha(u-1)\right)$

from Nowizin's GAN tutorial, MLSS 2018, Madrid

Most metrics have large tables of alternatives like this.

Bregman Divergence (skip)

Is the class defined on discrete probability vectors \vec{p} and \vec{q} as

$$B_F(ec{p},ec{q}) = F(ec{p}) - F(ec{q}) - (ec{p} - ec{q})^T
abla F(ec{q})$$

for convex vector function $F(\cdot)$.

- includes K-L and a variation gives TV
- intersection with f-divergence is the class of alpha-divergences or Rényi entropies

Transport Metrics (skip)

Is the class defined on probability functions $p(\cdot)$ and $q(\cdot)$, given distance $d(\cdot, \cdot)$ sharing the same domain

$$W_{d(\cdot,\cdot)}(p,q) = \sup_{T(\cdot)} \left| \mathsf{E}_{x \sim p} [T(x)] - \mathsf{E}_{x \sim q} [T(x)] \right|$$

where $T(\cdot)$ must satisfy $|T(x) - T(y)| \le d(x, y)$.

- for standard Euclidean metric, this means $T(\cdot)$ is 1-Lipschitz
 - coarsely implemented with deep networks using "weight clipping"
- includes TV as the trivial case where $d(x, y) = 1_{x=y}$
- rather similar in form to second variation of f-divergence (indeed, they are the same for TV)

- An embarrassment of riches!
- But what guidance do we have regards the best choice?
 - theory is more about relationships and general properties

- An embarrassment of riches!
- But what guidance do we have regards the best choice?
 - theory is more about relationships and general properties
- K-L divergence where the first argument is the empirical data distribution is equivalent to maximum likelihood.
 - an old result from the physicists

- An embarrassment of riches!
- But what guidance do we have regards the best choice?
 - theory is more about relationships and general properties
- K-L divergence where the first argument is the empirical data distribution is equivalent to maximum likelihood.
 - an old result from the physicists
- Reasonable criteria, based on large sample theory, is they be proper scoring rules.
 - most differentiable cost functions are, e.g., not TV!

- An embarrassment of riches!
- But what guidance do we have regards the best choice?
 - theory is more about relationships and general properties
- K-L divergence where the first argument is the empirical data distribution is equivalent to maximum likelihood.
 - an old result from the physicists
- Reasonable criteria, based on large sample theory, is they be proper scoring rules.
 - most differentiable cost functions are, e.g., not TV!
- Far less guidance in the small sample case.
 - Bayesian ideas can help!

- An embarrassment of riches!
- But what guidance do we have regards the best choice?
 - theory is more about relationships and general properties
- K-L divergence where the first argument is the empirical data distribution is equivalent to maximum likelihood.
 - an old result from the physicists
- Reasonable criteria, based on large sample theory, is they be proper scoring rules.
 - most differentiable cost functions are, e.g., not TV!
- Far less guidance in the small sample case.

Bayesian ideas can help!

- Some applications are not model fitting but data summarisation.
 - e.g., hierarchical clustering
 - so motivation for selection of cost is completely different

The K-L Variational Setup (skip)

The variational method, also called mean field is based on the following information theoretic identity:

$$\log p(\boldsymbol{x}|\Theta) - KL(q(\boldsymbol{z}|\boldsymbol{x}) \| p(\boldsymbol{z}|\boldsymbol{x},\Theta))$$
(1)

$$= \mathsf{E}_{q()}[\log p(\mathbf{x}, \mathbf{z}|\Theta)] + H(q()) \tag{2}$$

- data is x, latent variables z, model parameters Θ
- q(z|x) is an introduced probability density and we can vary how we like
- theoreticians have tried to reproduce/generalise this to other divergence/metric paradigms
 - haven't succeeded
 - the relationships between probability, independence and K-L are unique!

The K-L Variational Setup (skip)

The variational identity:

 $\log p(\mathbf{x}|\Theta) - KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x},\Theta))$ (1) = $\mathbb{E}_{q()}[\log p(\mathbf{x},\mathbf{z}|\Theta)] + H(q())$ (2)

• To maximise $p(\mathbf{x}|\Theta)$, therefore repeatedly

- 1. increase (1): get q(z|x) closer to $p(z|x,\Theta)$ in K-L
- 2. increase (2): by optimising/gradient-descent w.r.t. Θ

The K-L Variational Setup (skip)

The variational identity:

$$\log p(\mathbf{x}|\Theta) - KL(q(\mathbf{z}|\mathbf{x})||p(\mathbf{z}|\mathbf{x},\Theta))$$
(1)
= $E_{q()}[\log p(\mathbf{x},\mathbf{z}|\Theta)] + H(q())$ (2)

- To maximise p(x|Θ), therefore repeatedly
 1. increase (1): get q(z|x) closer to p(z|x,Θ) in K-L
 2. increase (2): by optimising/gradient-descent w.r.t. Θ
- for exponential family, Step 1 & 2 are usually simple
 when q(z|x) = p(z|x, Θ), a local maxima is achieved!

A Probabilistic Model (ML circa 2000s)

- 1. For each topic k:
 - (a) For each doc-label *l*: Draw $\lambda_{l,k} \sim \text{Ga}(\mu_0, \mu_0)$
 - (b) For each word-feature l': Draw $\delta_{l',k} \sim \text{Ga}(\nu_0,\nu_0)$
 - (c) For each token v: Compute $\beta_{k,v} = \prod_{l'=1}^{L_{word}} \delta_{l',k}^{g_{v,l'}}$
 - (d) Draw $\phi_k \sim \text{Dir}_V(\beta_k)$
- 2. For each document d:
 - (a) For each topic k: Compute $\alpha_{d,k} = \prod_{l=1}^{L_{doc}} \lambda_{l,k}^{f_{d,l}}$
 - (b) Draw $\boldsymbol{\theta}_d \sim \operatorname{Dir}_K(\boldsymbol{\alpha}_d)$
 - (c) For each word in document d:
 - i. Draw topic $z_{d,i} \sim \operatorname{Cat}_K(\boldsymbol{\theta}_d)$
 - ii. Draw word $w_{d,i} \sim \operatorname{Cat}_V(\phi_{z_{d,i}})$

from Zhao etal. KAIS 2017

Probabilistic model for fancy topic modelling: MetaLDA.

A Probabilistic Model, cont.

Deriving the posterior:

$$\begin{aligned} \Pr(\boldsymbol{z}_{1:D}, \boldsymbol{w}_{1:D}; \boldsymbol{\alpha}_{1:D}, \boldsymbol{\beta}_{1:K}) \\ &= \int_{\boldsymbol{\theta}} \prod_{d=1}^{D} \frac{\Gamma(\sum_{k=1}^{K} \alpha_{d,k})}{\prod_{k=1}^{K} \Gamma(\alpha_{d,k})} \prod_{k=1}^{K} \theta_{d,k}^{m_{d,k} + \alpha_{d,k} - 1} \int_{\boldsymbol{\phi}} \prod_{k=1}^{K} \frac{\Gamma(\sum_{v=1}^{V} \beta_{k,v})}{\prod_{v=1}^{V} \Gamma(\beta_{k,v})} \prod_{v=1}^{V} \phi_{k,v}^{n_{k,v} + \beta_{k,v} - 1} \cdot \\ &= \prod_{d=1}^{D} \frac{\operatorname{Beta}_{K}(\boldsymbol{\alpha}_{d} + \boldsymbol{m}_{d})}{\operatorname{Beta}_{K}(\boldsymbol{\alpha}_{d})} \prod_{k=1}^{K} \frac{\operatorname{Beta}_{V}(\boldsymbol{\beta}_{k} + \boldsymbol{n}_{k})}{\operatorname{Beta}_{V}(\boldsymbol{\beta}_{k})} \end{aligned}$$
(2)

Deriving a Gibbs sampler:

$$\Pr(z_{d,i} = k \mid \boldsymbol{z}_{1:D}^{-z_{d,i}}, \boldsymbol{w}_{1:D}, \boldsymbol{\alpha}_{1:D}, \boldsymbol{\beta}_{1:K}) = \frac{\Pr(z_{d,i} = k, \boldsymbol{z}_{1:D}^{-z_{d,i}}, \boldsymbol{w}_{1:D}, \boldsymbol{\alpha}_{1:D}, \boldsymbol{\beta}_{1:K})}{\Pr(\boldsymbol{z}_{1:D}^{-z_{d,i}}, \boldsymbol{w}_{1:D}, \boldsymbol{\alpha}_{1:D}, \boldsymbol{\beta}_{1:K})} \\ \propto (\alpha_{d,k} + m_{d,k}) \frac{\beta_{k,v} + n_{k,v}}{\beta_{k,v} + n_{k,v}}.$$
(3)

A complex task, takes advanced statistical training!

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

What did We Learn from Old ML?

- models as first-class objects
 - e.g., Bayesian & Markov networks, neural networks
- how to do linear and partitioning models well e.g., XGBoost, online LDA, exponential family, additive models
- how to augment them with fancy mathematical tricks

e.g., kernels, non-parametrics (infinite vectors)

- cost functions and statistical ML theory
 - e.g., bias-variance tradeoff, regularisation, metrics and divergences, variational methods

paradigms

e.g., online learning, active learning, transfer learning

Bengio et al.s' "Representation Learning: A Review and New Perspectives" 2013 *IEEE PAMI* article has a nice summary!

How Does Deep Learning Innovate?

- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!

How Does Deep Learning Innovate?

- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!
- ▶ Porting down to GPUs or multi-core allows real speed.
- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!
- Porting down to GPUs or multi-core allows real speed.
- Learning representations and discovering higher order concepts.
 - convolutions, structures, sequences, …

- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!
- Porting down to GPUs or multi-core allows real speed.
- Learning representations and discovering higher order concepts.
 - convolutions, structures, sequences, …
- High capacity makes them very flexible in fitting and does implicit parallel search.

- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!
- Porting down to GPUs or multi-core allows real speed.
- Learning representations and discovering higher order concepts.
 - convolutions, structures, sequences, …
- High capacity makes them very flexible in fitting and does implicit parallel search.
- Allows "modelling in the large":
 - learning to learning
 - multi-task learning
 - imitation learning
 - convolutions, structures, sequences, …

- Model/Spec driven black-box algorithms ease the workload of developers.
 - machine learning without statistics!
- Porting down to GPUs or multi-core allows real speed.
- Learning representations and discovering higher order concepts.
 - convolutions, structures, sequences, …
- High capacity makes them very flexible in fitting and does implicit parallel search.
- Allows "modelling in the large":
 - learning to learning
 - multi-task learning
 - imitation learning
 - convolutions, structures, sequences, …
 - NB. we can do some of this with hierarchical Bayesian models

The Old Versus The New: I

The Old: need experts to carefully design algorithms:

- experts need knowledge of distributions and techniques like variational algorithms or Gibbs samplers to construct algorithms
- statistical knowledge intensive

The New: (semi) automatic black-box algorithms:

- automatic differentiation, ADAM optimisation, etc.
- port down to GPUs or multi-core, etc.
- easier to scale algorithms

The Old Versus The New: II

The Old: modelling in the small:

- huge range of components can be used
- individual components need care and attention for algorithm development

The New: modelling in the large:

- whole blocks can be composed
- general purpose methods deal with it
- restricted in allowable components
 - use concrete distribution and reparameterisation trick

The Old Versus The New: III

The Old: components often directly interpretable:

parameter vectors can have easy interpretation

The New: black-box model requires "explanation" support:

- cannot interpret the model
- need techniques like LIME and SHAP to intepret results

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

Making Deep Learning Work

Cost function example:

$\mathit{KL}\left(\mathit{p_{data}}(ec{x}), \mathit{p}(ec{x} | \mathbf{\Phi}) ight) + \lambda ||\mathbf{\Phi}||^2$

- cost function has an error term and a regularisation term
- use a coding language such as TensorFlow to specify an architecture (the model with parameters Φ)
- automatic differentation can be used to generate code for derivatives
- hooked up to a self-tuning and stochastic variation of gradient descent

Making Deep Learning Work

Cost function example:

$\mathit{KL}\left(\mathit{p_{data}}(ec{x}), \mathit{p}(ec{x} | \mathbf{\Phi}) ight) + \lambda ||\mathbf{\Phi}||^2$

- cost function has an error term and a regularisation term
- use a coding language such as TensorFlow to specify an architecture (the model with parameters Φ)
- automatic differentation can be used to generate code for derivatives
- hooked up to a self-tuning and stochastic variation of gradient descent

The cost function is approximately minimised semiautomatically, so the effort is in specifying the architecture and the cost function.

Deep Representations

from https://thedatascientist.com/what-deep-learning-is-and-isnt/

IDEA: different layers of the network "learn" alternative representations of elements in the image

A Simple Network

A Bigger Network

Fully-connected laver Convolutional feature map 64@1x18 Convolutional feature map 64@3x20 Convolutional feature map 48@5x22 Convolutional feature map 36@14x47 Convolutional feature map 24@31x98 Normalized input planes 3@66x200

- CNN architecture for driving a car from 2016
- 27M connections but 250k parameters
- convolutions mean there are less parameters than connections
- the working system is compiled from high-level architectural specs

Symmetric and Sparsity in Modelling

Observation: in 2005 I tried adding complex word priors to LDA that had the effect of breaking the symmetry in the model fitting was terrible despite being a good prior!

Model symmetry: identical blocks in a model with random initialisation allow alternatives to appear organically Model sparsity: many alternatives act as a form of implicit parallelism

These two constructs help explain a lot of the surprising empirical observations where deep NNs seemingly defy statistical learning theory

Data Augmentation

from Ahmad, Muhammad and Baik, PLoS ONE 2017

Data Augmentation: MNIST

- technique first used in Zipcode recognition for the US Post
- images can be rotated, shifted, thinned, etc.

Data Augmentation, MNIST Discussion

- Examples:
 - for digit recognition from images, we want invariance under (1) small shifts, (2) small rotations, (3) thickness changes.
 - for bank loan assessment, we want monotonicity in (1) salary and (2) bank balance, but not age
- It is hard to design these in as invariants of the resultant classification algorithm.
- It is easy to do data augmentation: generate 10 variants of each digit to use for training.
- Recent differential/regularisation techniques can also "encourage" invariants and monotonicity to hold
 - also useful for introducing fairness in learning

Data Augmentation, Discussion

- We need to identify an invariant in our data we want to hold.
- e.g. For text, we could replace synonyms, convert cases (active to passive, past to future tense), etc.
 - We need an algorithm to apply changes to the data reflecting the invariant.
 - Probabilistic model, for the augmentation distribution Aug, treats it like a convolution:

 $\begin{aligned} p(y_i \mid x_i, \Theta) & \text{standard data likelihood} \\ \int_{x'} p(y_i \mid x'_i, \Theta) p(x' \mid x_i, \operatorname{Aug}) \, \mathrm{d}x' & \text{augmented data likelihood} \end{aligned}$

Multi-Task Learning: Sharing

- 3 tasks A, B and C
- share lower layers of the network as "pattern" features
- upper layers specialise for tasks

Feature Sharing

from Bhattacharjee et al, ArXiv, 2019

Shows amount of feature sharing done by a multi-task object categorisation system. In this case, level of sharing was learnt.

Pre-Training: Initialisation

- 1. train the network initially on a very large set of "somewhat" related images
- 2. leave the values as an initialisation

Pre-Training: Fix Features

- 1. train the network initially on a very large set of "somewhat" related images
- 2. fix the lower levels of the network
- 3. for a new, different, and smaller set of specialised data, tune the upper network to better fit the new data

Pre-Training: Fix Features, cont.

- 1. train the network initially on a very large set of "somewhat" related images
- 2. fix the lower levels of the network
- 3. for a new, different, and smaller set of specialised data, tune the upper network to better fit the new data

Pre-Training Method

from Noroozi, Vinjimoor, Favaro, Pirsiavash, CVPR 2018

Pre-Training: Discussion

pre-training is a way of initialising and/or a way of providing lower-level features

- able to make use of very large unlabelled datasets for text and images
- we pre-train on a large set of data once, and reuse the pre-trained model many times
- for lower-level features, you would hope the tasks have "lower-level" similarity
- if you have less training data for your new task, leave more of the lower-level layers intact
 - reduce the capacity of the network to be tuned, since there is less data available to do it

Pre-Training: Discussion, cont.

How useful are these three images sets for subsequently **learning flowering plants?**

Self-supervision

- to do pre-training, we need a task for learning
- embedding methods are an early precursor
- pre-training should build lower-level features useful for subsequent target classes

Self-supervision: an artificial task created for the purposes of learning a network useful as a pre-trained network.

called "self" supervised since the task is created automatically

Self-supervision, cont.

Self-supervision: an artificial task created for the purposes of learning a network useful as a pre-trained network.

- examples for image recognition:
 - color a B/W image
 - fill-in missing patches ("image in-painting")
 - object classification from very broad image class
- examples for text classification:
 - predict missing words
 - forwards and backwards order

Self-supervision, cont.

Self-supervision: an artificial task created for the purposes of learning a network useful as a pre-trained network.

- examples for image recognition:
 - color a B/W image
 - fill-in missing patches ("image in-painting")
 - object classification from very broad image class
- examples for text classification:
 - predict missing words
 - forwards and backwards order
- generally, the self-supervision task should be (1) richer and more refined than or (2) similar to subsequent target tasks

Self-supervision, cont.

Self-supervision: an artificial task created for the purposes of learning a network useful as a pre-trained network.

- examples for image recognition:
 - color a B/W image
 - fill-in missing patches ("image in-painting")
 - object classification from very broad image class
- examples for text classification:
 - predict missing words
 - forwards and backwards order
- generally, the self-supervision task should be (1) richer and more refined than or (2) similar to subsequent target tasks
- fundamentally different to component models builts as a latent variable models (e.g., matrix factorisation)

Pseudo-likelihood and Self-supervision

A pseudo-likelihood (Besag 1975) is an approximation to the joint probability distribution of a collection of random variables using univariate conditionals:

$$ilde{p}(X|\Theta) \equiv \prod_{x \in X} p(x | X \setminus \{x\}, \Theta)$$

it is easily computed because the individual conditionals can usually be easily marginalised.

used to train Markov networks in neural networks

- Maximising pseudo-likelihood is known to be consistent with maximising likelihood in the limit of infinite data.
- Pseudo-likelihood can be viewed as a simplified theoretical view of self-supervision.
- But an alternative view is of representation learning.

Artificial Faces

Early Generative Adversarial Networks (GANs) were trained to generate new faces given 1000s of examples.

Generative Deep Learning

- the Generative Adversarial Networks (GAN) and Variational Autoencoder (VAE) implement the same model but with different algorithms
 - model is on the left
 - GAN doesn't explicitly find z during training

Generative Deep Learning

- the Generative Adversarial Networks (GAN) and Variational Autoencoder (VAE) implement the same model but with different algorithms
 - model is on the left
 - GAN doesn't explicitly find z during training
- this is a generalisation of LDF, PMF, ICA, PCA, etc., all the matrix factorization models
- in our experience, individual elements of the latent vector z
 are encouraged to be independent
 - more independence means higher capacity model

Variational Autoencoder, cont.

- The original VAE algorithm is similar to the standard variational method
 - q(Z|X) is fit using Equation (2), not (1)
 - ▶ so in principle it can optimise
 - surprisingly good scaling properties using amortisation
 - very good topic model variants exist
 - needed Bayesian guys to do a hybrid Deep-Bayesian method
Generative Deep Learning, cont.

the original GAN is (almost) equivalent to minimising conjugate formulation of J-S divergence between data and model

Nowozin's GAN tutorial at MLSS 2018

data distribution in this case is

$$p(x|data) = \frac{1}{l} \sum_{i=1}^{l} \delta_{x_i=x}$$

Generative Deep Learning, cont.

the original GAN is (almost) equivalent to minimising conjugate formulation of J-S divergence between data and model

- Nowozin's GAN tutorial at MLSS 2018
- data distribution in this case is

$$p(x|data) = \frac{1}{l} \sum_{i=1}^{l} \delta_{x_i=x}$$

- is the adversarial framework a mathematical digression?
- applying K-L divergence to same data distribution is equivalent to maximum likelihood!
- GANs are judged completely differently to other learned models
- state-of-the-art GANs use transport metrics and ensembles (I'm told)

Encoder-Decoder Versus VAE

right figure from Wikipedia

The encoder-decoder framework can be interpreted probabilistically as a GAN/VAE type model where the latent variable \vec{h} is discrete instead of real-valued.

Disentangling Concepts

- disentangling is a term popularised in Bengio, Courville, and Vincent's classic 2012, IEEE Trans PAMI paper
- term is somewhat vaguely defined in the literature!
- we want discovered latent variables of a GAN/VAE to be "independent causally" w.r.t. the task
- e.g. consider the task of digit recognition
 - color, rotation, shift, thickness, font style are independent dimensions we would like to discover that are irrelevant to the digit classification

Disentangling Concepts

- disentangling is a term popularised in Bengio, Courville, and Vincent's classic 2012, IEEE Trans PAMI paper
- term is somewhat vaguely defined in the literature!
- we want discovered latent variables of a GAN/VAE to be "independent causally" w.r.t. the task
- e.g. consider the task of digit recognition
 - color, rotation, shift, thickness, font style are independent dimensions we would like to discover that are irrelevant to the digit classification —> disentangle them!

Graph Embeddings

- techniques similar to word embeddings have been developed for graphs
- similar techniques apply: cost functions, negative sampling,
- nodes in graphs also have extensive side information
 - "hospital patient" node in a graph may have their socio-economic data attached as an attribute of the node

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure Tasks

Supervision Background Knowledge

Meta-Learning

Consider Object Recognition

image from Heiko Hoffmann, HRL Laboratories, DARPA 2019

Wouldn't it be good if we could learn all the different object classes with just a few examples!

One-Shot Learning

Karlinsky et al, CVPR 2019

To do large scale object recognition and scene understanding in images, it would be good to have one-shot (or "few-shot") learning working.

One-Shot Learning, cont.

 $\ensuremath{\textit{zero-shot:}}$ recognise given a description rather than an example, i.e., this is IR

One-Shot Learning, cont.

zero-shot: recognise given a description rather than an example, i.e., this is IR

few-shot: recognise from a few examples,

- i.e., this is data poor learning
 - one/few-shot have a wide variety of approaches
 - research largely in image recognition
 - current focus is the continuum between 0-1-few-many
 - requires a trade-off of prior knowledge and data

Covariate Shift

Visible Light Sensor Rural Environment

Visible Light Sensor Urban Environment

figure

from Eisenberg, Embedded Intelligence, DARPA 2019

Changing the context or background distributions, makes recognition different.

Called covariate shift, and a form of domain adaptation.

Problem setup: target variables or input data changes in distribution; for prediction of y_i from features x_i

- in covariate shift, $p(\mathbf{x}_i)$ changes, not $p(y_i|\mathbf{x}_i)$
- however, new data after shift will occur outside the "comfort zone" of the initial trained system
- if training builds a causal model, it should be robust to covariate shift

but rarely done!

Task Types

(my take on the old ML version)

Shift: target variables or input data changes in distribution; for prediction of y_i from features x_i :

Online: learning and evaluation is done incrementally

Multi-task: several/many related tasks are done

Life-long: new, somewhat related tasks are constantly appearing

Human in the Loop: during learning, varied forms of human involvement:

- can choose to label via active learning
- similar to crowd-sourcing (i.e., a flawed oracle)

Recognition: identifying an object within a broader context

objects in vision, named-entities in text

Task Types

(my take on the old ML version)

Shift: target variables or input data changes in distribution; for prediction of y_i from features x_i :

Online: learning and evaluation is done incrementally

Multi-task: several/many related tasks are done

Life-long: new, somewhat related tasks are constantly appearing

Human in the Loop: during learning, varied forms of human involvement:

- can choose to label via active learning
- similar to crowd-sourcing (i.e., a flawed oracle)

Recognition: identifying an object within a broader context

objects in vision, named-entities in text

learning to learn is usually situated in these richer learning tasks

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Tasks Supervision Background Knowledge

Meta-Learning

Weak Supervision

figure from Stephen Bach, Brown University, DARPA 2019

Different kinds of "weak" information about a concept can be used to support learning \longrightarrow weak supervision.

Semi-Supervised Learning

Entropy Minimisation for Semi-Supervised Learning

Supervision Types

(my take on the old ML version)

Supervised: classes or target variables for prediction are supplied with the data

Unsupervised: no supervision is given at all; learn about the data generally

Semi-supervised: classes or target variables for prediction are supplied with the data for only a (smaller) subset of data

Weakly supervised: incomplete or approximate supervision supplied with the data

Self-supervised: an artificial task is created for the purposes of pre-training

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Tasks Supervision Background Knowledge

Meta-Learning

Background Knowledge Types

Related tasks: useful for selection of data for pre-training and related systems for domain adaptation, ...

- Features: causal relationships, invariances to support augmentation, as trained by pre-training, ...
- Data augmentation: invariants, monotonicities other properties of data ...
- Weak supervision: special case of related tasks, useful for partial, initial or filtering models, ...
- Task descriptions: used for weak-supervision, selection of related tasks, ...
- Regularisation: entropy minimisation, consistency regularisation, prior rate alignment, ...

Background Knowledge Types

Related tasks: useful for selection of data for pre-training and related systems for domain adaptation, ...

- Features: causal relationships, invariances to support augmentation, as trained by pre-training, ...
- Data augmentation: invariants, monotonicities other properties of data ...
- Weak supervision: special case of related tasks, useful for partial, initial or filtering models, ...
- Task descriptions: used for weak-supervision, selection of related tasks, ...
- Regularisation: entropy minimisation, consistency regularisation, prior rate alignment, ...

These often work orthogonally to tasks

Outline

Historical Perspective

A Catalogue of Machine Learning Ideas

Old ML versus New ML

A Catalogue of Deep Learning Ideas

Learning Infrastructure

Meta-Learning

Meta-Learning

Meta-Learning: where learning is applied to support the task of learning itself.

- meta learning strongly inspired by the human experience
 - my motivation for entering Machine Learning in 1984
- is patchwork of different techniques, not a single consistent method
 - reinforcement learning
 - hierarchical Bayes
 - architectural tricks in deep learning
- large groups are building pipelines and architecture
 - one of a few key "hot" areas in ML

Multi-Task Learning (MTL)

We can rebrand hierarchical Bayesian modelling as multi-task learning.

 $\Theta_1 - \Theta_T$: task specific parameters Θ^G : shared parameters

 $\tilde{\Theta}_1 - \tilde{\Theta}_{\mathcal{T}}$: task specific instantiation of shared parameters

Simple Meta-Learning

Shared parameters Θ^{G} could be:

- hyper-parameters of optimiser (e.g., step size)
- parameter initialisations
- Iower-level part of a deep NN

Each of these has a huge recent literature!

Model Agnostic Meta-Learning

Figure 1: Illustrative diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

learn parameter initialisations (using one-shot framework)
see Finn, Abbeel and Levine, 2017, arXiv:1703.03400

Altering Faces: Style Learning

Learning to Augment Data

from Schwartz et al, NeurIPS 2018, Delta-encoder

- learn the variance, spread or difference of typical examples from related domains
- apply the variance/spread/difference to the new data
- often uses GANs for the learning
- can be used as a hybrid of weak supervision
 e.g., adding estimated
 bounding boxes to objects in images

Neural Machine Translation (NMT)

ZareMoodi, Buntine, Haffari ACL 2018

- Bilingually low-resource scenario: large amounts of bilingual training data is not available.
- IDEA: Use existing resources from other tasks and train one model for all tasks using multi-task learning (MTL).

NMT: Multi-Task Model

- Block-1 to Block-3 are task independent components, Θ^G the shared common knowledge for MTL
- Routing-Network controls their use on a task to create $\tilde{\Theta}_t$
- task specific parameter is Θ_t

Questions?

Figure source: http://milewalk.com/mwblog/4-worst-job-interview-questions/