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A Cultural Divide
Context: When discussing teaching Data Science with a well
known professor of Statistics.

She said: “when first teaching overfitting, I always give some
examples where machine learning has trouble”

I said: “funny, I do the reverse, I always give examples where
statistical models have trouble”

Lesson:
We tend to have overly simple characterisations of
different communities.

Lets ensure we move from ClaĄical MaĚine Learning into Deep
Neural Networks wisely, and not throw away the good stuff!
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Motivation

I’m interested in true hybrid techniques between ClaĄical
MaĚine Learning and Deep Neural Networks, both theory
and implementation.
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Bayesian Network

Classifiers

IMGP3678 By Matt Buck (CC BY-SA 2.0)
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Learning Bayesian Networks
tutorial by Cussens, Malone and Yuan, IJCAI 2013

Bayesian Networks learning = Structure learning +
Conditional Probability Table (CPT) estimation
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Bayesian Network Classifiers (BNC)
Friedman, Geiger, Goldszmidt, Machine Learning 1997

I For classification or supervised learning.
I BNC defined by Network Structure and Conditional

Probability Tables (CPTs)
I Class is Y and attributes are Xi .
I For classification, make Y a parent of all Xi
I Classifies using P(y | x) ∝ P(y)

∏
P(xi | parents(xi ),Y )

Naïve Bayes classifier:
parents(xi ) = {y}

X2 X4 X1 X3

Y

Decreasing mutual information with Y
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k-Dependence Bayes (KDB)
Sahami, KDD 1996

KDB-1 classifier:
(attributes have 1 extra parent) X2 X4 X1 X3

Y

Decreasing mutual information with Y

KDB-2 classifier:
(attributes have 2 extra parents)

X2 X4 X1 X3

Y

NB. other parents also selected by mutual information
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Selective k-Dependence Bayes (SKDB)
Martínez, Webb, Chen and Zaidi, JMLR, 2016

I SKDB is KDB where we estimate k and which input variables
to use.

I Three pass learning algorithm:
I 1st pass, learn network structure,
I 2nd pass, select k, number of parents, using LOOCV,
I 3rd pass, learn CPTs.

I Algorithm is largely counting and sorting so is inherently
scalable.

However,
I beats decision trees, but is not as good as Random Forests or

Gradient Boosting of Trees1

1The top classification algorithms on Kaggle.
11 / 87



Improving SKDB

I Probability estimation for CPTs uses simple methods.
I We add hierarchical Dirichlet smoothing (Petitjean, Buntine,

Webb, Zaidi, ECML-PKDD 2018).

I There is no use of ensembles.
I We add ensembling (Zhang, Buntine, Petitjean, forthcoming).
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Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male
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I You want to predict disease as a function of some rare gene G
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Why doing Hierarchical Smoothing?

I You want to predict disease as a function of some rare gene G
and sex, knowing that this disease is more prevalent for
females

#patients with disease
#patients without disease100–901

10–1 90–900

10–0 0–1

has gene doesn’t have gene

female male

pm-estimate = 25%
None of them use the fact that 91% of the patients
with that gene have the disease! 13 / 87



Hierarchical Modelling

Use a hierarchical model:

p(disease|has-gene & male):
leaf node, part of the model we want for inference
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Hierarchical Modelling

Use a hierarchical model:

p(disease|has-gene & male):
leaf node, part of the model we want for inference

p(disease|has-gene)
an abstract parent model used to improve leaf nodes

p(disease)
an abstract grandparent model used to improve parent model

NB. we build the hierarchies using Dirichlet distributions
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Why do Ensembling?

Ensembling: we generate a set of models H from training data,
and do inference on new case x by pooling results

p(y |x,H) = 1
|H|

∑
H∈H

p(y |x,H)

I The top classification algorithms on Kaggle use ensembling2

2Random Forests and Gradient Boosting of Trees.
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Ensembling: we generate a set of models H from training data,
and do inference on new case x by pooling results

p(y |x,H) = 1
|H|

∑
H∈H

p(y |x,H)

I The top classification algorithms on Kaggle use ensembling2

I The bias-variance-covariance decomposition of the mean
square error (MSE) of ensemble H (Uedo & Nakano, 1996)
explains why:

MSE (H) = bias(H)2+ 1
|H|

variance(H)+
(
1− 1
|H|

)
covariance(H)

i.e. larger ensemble sets with smaller covariance reduce MSE
I the frequentist explanation

2Random Forests and Gradient Boosting of Trees.
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Why do Ensembling?
We want inference on new case x from training data

p(y |x, training-data) =
∫

H
p(y |x,H)p(H|training-data) dH

≈ 1
|H|

∑
H∈H

p(y |x,H)

where H is a representive set of models for p(H|training-data)
I Bayesian statistical theory says ensembling is a good

approximation to the optimal classifier (Buntine, 1989).
i.e. since you don’t know the truth, hedge your bets with some

different options
I the frequentist and Bayesian approaches have great similarity!
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Improved SKDB

I With hierarchical smoothing, a single SKDB beats
Random Forests in MSE and 0-1 loss, and is more
scalable.
I Smoothed SKDB� Random Forests

I With hierarchical smoothing, an ensemble of SKDB beats
Gradient Boosting of Trees in MSE and 0-1 loss, and is
similar in speed.
I Smoothed Ensembled SKDB� Gradient Boosting of Trees

for discrete data, ..., currently
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Topic Models

from http://bayesian-models.org
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Latent Dirichlet Allocation
Blei, Ng, Jordan JMLR 2003
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Matrix Approximation
W ' ΘΦT

Data W Components Θ Error Models
real valued unconstrained least squares PCA and LSA
non-negative non-negative least squares NMF, learning codebooks
non-neg int. rates cross-entropy Poisson & Neg.Bino. MF
non-neg int.∗ probabilities cross-entropy topic models
real valued independent small ICA
non-neg int. scores shifted PMI GloVe
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Matrix Approximation Terminology

Statistics: “components”
Classical ML: “topics”
Deep NNs: “embeddings”
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Component Models, Generally

image−→

Prince, Queen,
Elizabeth, title,
son, ...

school, student,
college, education,
year, ...

John, David,
Michael, Scott,
Paul, ...

and, or, to , from,
with, in, out, ...

text−→

13 1995 accompany and(2) andrew at

boys(2) charles close college day de-

spite diana dr eton first for gayley

harry here housemaster looking old on

on school separation sept stayed the

their(2) they to william(2) with year

Approximate faces/bag-of-words (RHS) with a linear combination
of components (LHS).
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Improving Topic Models: I

Different topics should have different base rates.

I Consider the following topics in news about “Obesity”:

I say have obesity not health need problem issue
−→ 10.7% of words

I christ religious faith jewish bless wesleyan
−→ 0.08% of words

I Standard LDA says these two should be equally likely.

23 / 87



Improving Topic Models: I

Different topics should have different base rates.
I we make priors on the topic proportions asymmetric,
I done by Teh, Jordan, Beal and Blei 2006

I spawned Hierarchical Dirichlet processes (HDP) and
nested/hierarchical Chinese restaurants
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Improving Topic Models: I
Different topics should have different base rates.
I we make priors on the topic proportions asymmetric,
I done by Teh, Jordan, Beal and Blei 2006

I spawned Hierarchical Dirichlet processes (HDP) and
nested/hierarchical Chinese restaurants

I done by Wallach, Mimno, McCallum 2009
I now available in the Mallet topic modelling system

I considerable theory and algorithms, 2009-2012
I noteable mention: Bryant and Sudderth, 2012
I but some implementations gave poor results

I done by Buntine and Mishra, KDD, 2014
I does HDP efficiently with a fast Gibbs sampler
I multi-core, great results
I Gibbs sampling beats variational inference!
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Yields High Fidelity Topics
Examples from 100 topics about “Obesity in the ABC news” from
2003-2012, from 600 news articles of average length 150 words:

rank words
5 4.57% study researcher finding journal publish twice university
14 1.54% teenager boy child adults parent youngster bauer school-child
22 0.86% doctor ambulance hospital psychiatric general-practitioner staff
42 0.43% soft-drink instant soda carbonated fizzy beverages candy sugary
78 0.18% olympics time second olympic pool win team freestyle gold
91 0.11% colonel lieutenant-general afghanistan rifle stirling mission
95 0.10% dialysis end-stage dementia kidney-disease kidney abdominal

I 100 topics for 600 documents
I most are on coherent subjects
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Improving Topic Models: II
Words in text are bursty: they appear in small bursts.

Original news article:
Women may only account for 11% of all Lok-Sabha

MPs but they fared better when it came to represen-

tation in the Cabinet. Six women were sworn in as

senior ministers on Monday, accounting for 25% of the

Cabinet. ...

Bag of words:
11% 25% Cabinet(2) Lok-Sabha MPs Monday Six They

Women account accounting all and as better but came

fared for(2) in(2) it may ministers of on only represen-

tation senior sworn the(2) to were when women

I effect is called burstiness
I first modelled by Doyle and Elkan 2009, but intolerably slow
I done by Buntine and Mishra, KDD, 2014 using HDPs

I only 25% (or so) penalty in memory and time
I huge improvement in perplexity, and smaller one in coherence
I but loss of fidelity (“fine” low probability topics)

I so we usually don’t use
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Improving Topic Models: III
Information about word similarity/semantics should be used
when building topics.

from “An Introduction to Word Embeddings”, blog by Roger Huang, 2017

I we use prior information about words from embeddings
I done recently by many in topic modelling and deep neural

networks
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ASIDE: Multi-Label Learning (MLL)

I same source data
I multiple labels
I one combined model/system to do it
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ASIDE: Multi-Task Learning (MTL)

I different source data
I different labels or tasks
I one combined model/system to do it
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ASIDE: Naive Multi-Task Learning
Have T somewhat related separate classification tasks.
Predict Yt from Xt using parameters Θt .

p(Yt |Xt , Θt) for t = 1, ...,T

X1

Y1 Θ1

X2

Y2 Θ2 ...

XT

YT ΘT
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ASIDE: Multi-Task Learning (MTL)
Add a shared parameter ΘG which captures “common knowledge”.

p(Θ̃t |ΘG) for t = 1, ...,T
p(Yt |Xt , Θt , Θ̃t) for t = 1, ...,T

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

NB. another hierarchical model with ΘG the parent node
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Prior Regression for MTL
Regress from metadata Ct onto task-specific version of common
knowledge Θ̃t , using parameters ΘG .

p(Θ̃t |Ct , ΘG) for t = 1, ...,T
p(Yt |Xt , Θt , Θ̃t) for t = 1, ...,T

C1

X1

Y1 Θ1

Θ̃1

C2

X2

Y2 Θ2

Θ̃2

...

ΘG
CT

XT

YT ΘT

Θ̃T

NB. in statistics, random effects models achieve this effect
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Improving Topic Models: III

Information about word similarity/semantics should be used
when building topics.
I we use prior information about words from embeddings
I done recently by many in topic modelling and deep neural

networks
I done using prior regression by Zhao, Du, Buntine, Liu ICDM

2017, Zhao, Du, Buntine, ACML 2017
I regress the metadata (e.g., word embeddings, document

labels) onto the model parameters during learning
I using fast “gamma regression”
I code available at He Zhao’s GitHub repo
I very good results
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Improving Topic Models: IV

Hierarchical structure between topics should be discovered.
I once we go beyond 20 topics, this supports explanation
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Topics Enhanced with Word Embeddings
Zhao, Du, Buntine, Zhou ICML 2018
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Why Do They Work?

Classification with Smoothed, Ensembled BNCs:

I partitioning (sorting and counting)=⇒ computation is scalable
I hierarchical models and smoothing=⇒ helps prevent overfitting on single model
I ensembles=⇒ giving us great learning performance since 1988!
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Why Do They Work?

Topic Models with Rich Priors and Structures:

I prior regression=⇒ uses metadata so parameters for similiar items will end
up being similar

I hierarchical (“deep”) Bayesian models=⇒ like deep neural networks, they learn shared structures
I Gibbs sampling=⇒ a generic estimation tool we can automate, and can be

done efficiently with multicore or GPUs
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Neural Machine Translation (NMT)
ZareMoodi, Buntine, Haffari ACL 2018

I Bilingually low-resource scenario: large amounts of bilingual
training data is not available.

IDEA: Use existing resources from other tasks and train one model
for all tasks using multi-task learning (MTL).
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NMT: Add Other Tasks
Add three additional tasks after the primary translation task.
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NMT: Basic Setup
Train on the 4 tasks with a task indicator.
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Reminder: Multi-Task Learning (MTL)

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

Use the standard MTL setup.
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NMT: Multi-Task Model
Extend a standard recurrent neural network model by adding
multi-tasking blocks and a gating controller.
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NMT: Multi-Task Model

I Block-1 to Block-3 are task independent components, ΘG the
shared common knowledge for MTL

I Routing-Network controls their use on a task to create Θ̃t
I task specific parameter is Θt
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NMT: Results

I Implementation for the RNN uses 400 hidden states.
I Experiments with English to Farsi and English to Vietnamese

(about 100k sentence pairs each in training).
I Good improvements in BLUE and Perplexity over other

methods.
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Active Learning

(from kisspng.com “active learning machine learning”)
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Active Learning
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Active Learning by Imitation
Liu, Buntine, Haffari ACL 2018

I Active learning is a useful technique when labelled data is
inadequate for classification.

I Various heuristics exists to propose new instances for the
Oracle/Expert to label:
I uncertainty sampling
I diversity sampling
I random sampling

IDEA: Use pool of related problems with available labelled data and
train a “tutor” to suggest instances.

I uses reinforcement learning
I technique is called imitation learning

I Ross & Bagnell, 2014
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Other Methods
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Learning to Learn

X1

Y1 Θ1

Θ̃1

X2

Y2 Θ2

Θ̃2

...

ΘG

XT

YT ΘT

Θ̃T

What other variants of the MTL template are there?
I learn to initialise parameters values
I learn SGD hyper-parameters, learning rate, etc.

e.g. I Model-agnostic meta-learning, Finn et al. 2017
I Meta-SGD, Li et al. 2017
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Notable Mentions
I “Hierarchical Attention Networks for Document

Classification”, Yang, Yang, Dyer, He, Smola & Hovy,
NAACL-HLT 2016
I documents have a hierarchical structure
I model attention to do classification
I great classification results

I “A Neural Autoregressive Topic Model”, Larochelle & Lauly,
NIPS 2012
I straight forward NN with hidden layer
I full sequence modelling, not bag-of-words
I great predictive results (we checked)

I several papers at ACML and workshops
I many more!
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Representation Theory
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ASIDE: Capacity Theory

Main Idea: if we use a “simpler” class of models, then
learning must happen faster, but the resultant learned model
may not be as good.

e.g. class of polynomials of degree at most n,
I Various versions of theory: VC dimension, Rademacher

complexity, uniform stability.
I But an old idea: “Capacity and Error Estimates for Boolean

Classifiers with Limited Complexity” Judea Pearl, IEEE PAMI,
1979.
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ASIDE: Regularisation Theory

Main Idea: Add a complexity measure to the error term
and optimise a multi-objective function:

model -error + λ ·model -complexity

for different λ.

I An old idea, developed by mathematicians in 1970’s as
solution to ill-posed problem.

I Independently developed as minimum description length
(MDL) and minimum message length (MML) in the 1960-70’s
too.

I Has a Bayesian interpretation.
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Representation Theory
Barron, 1993; Barron 1994

MSE for linear models with basis functions with p parameters and
N data with d dimensions, cannot do better than

O
( 1

p2/d

)
+ O

( p
N log N

)

MSE for 2-layer neural nets with sigmoidal units with r nodes and
N data with d dimensions (so p = O(rd) parameters) is

O
(1

r

)
+ O

( p
N log N

)
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Representation Theory, cont.

I deep neural networks improve over standard capacity and
regularisation theory

I many similar results, e.g., discussion in Zhang, Bengio, Hardt,
Recht, Vinyals ICLR 2017

I deep networks really are special, they learn better with same
number of parameters
I Yann LeCunn always said this, based on empirical evidence
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Why Do They Work?
I Model/Spec driven black-box algorithms ease the work load of

developers.
I machine learning without statistics!

I Porting down to GPUs or multi-core allows real speed.
I Deep models allow more effective learning and higher order

concepts to be discovered
I convolutions, structures, sequences, ...
I so-called representation learning

I High capacity makes them very flexible in fitting.
I Allows “modelling in the large”:

I learning to learning
I multi-task learning
I imitation learning
I convolutions, structures, sequences, ...
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The Old Versus The New: I

The Old: need experts to carefully design algorithms:
I experts need knowledge of distributions and techniques like

variational algorithms or Gibbs samplers to construct
algorithms

I statistical knowledge intensive

The New: (semi) automatic black-box algorithms:
I automatic differentiation, ADAM optimisation, etc.
I port down to GPUs or multi-core, etc.
I easier to scale algorithms
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The Old Versus The New: II

The Old: modelling in the small:
I huge range of components can be used
I individual components need care and attention for algorithm

development

The New: modelling in the large:
I whole blocks can be composed
I general purpose methods deal with it
I restricted in allowable components

I use concrete distribution and reparameterisation trick
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The Old Versus The New: III

The Old: components often directly interpretable:
I parameter vectors can have easy interpretation

The New: black-box model requires “explanation” support:
I cannot interpret the model
I need techniques like LIME and SHAP to intepret results
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The Old Versus The New: Impact

The New: allows a huge expansion in capability.
I automatic black-box algorithms
I learning to learn
I modelling in the large

e.g. porting to special purpose hardware

The New: but there is some loss.
I interpretable models
I whole classes of algorithms
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Something Borrowed
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Automating Statistical

Inference

from Buntine JAIR 1994
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BUGS: Bayesian inference Using Gibbs
Sampling
Spiegelhalter, Thomas, Best, Gilks, 1996

Modelling language:

model{
# model priors
beta0 ~ dnorm(0, 0.001)
eta1 ~ dnorm(0, 0.001)
tau ~ dgamma(0.1, 0.1)
sigma <- 1/sqrt(tau)
# data model, linear regression
for( i in 1:n) {

mu[i] <- beta0+ beta1*x[i]
y[i] ~ dnorm(mu[i] , tau)

}
}

I Simple Bayesian linear
regression using Gaussian
model ~x = β0 + β1~y .

I All constants, parameters and
data are defined in the
language.
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Bayesian inference Using Gibbs Sampling
Lunn, Spiegelhalter, Thomas and Best, Statistics in Medicine, 2009

I Modelling language using Bayesian networks to specify
probability models.
I compiles to stack-based intermediate code (like Java)

I Runs a simulation on the network to generate a set of typical
variable values, i.e., a sample.
I runs a Gibbs sampler

I Revolutionised the application of statistics in mid 90’s.
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Stan: similar to BUGS language but uses Hamiltonian
Monte Carlo (HMC); from Columbia

TFP: TensorFlow Probability (TFP), combines probabilistic
models and deep learning on modern hardware
I from the TensorFlow team at Google, released

April 2018

Edward: broad variety of statistical learning, in Python on
TensorFlow
I http://edwardlib.org/ by Dustin Tran in

TFP group, ex Blei student

Greta: simple and scalable statistical modelling in R, built
on Google’s TensorFlow
I Nick Golding, on GitHub, 2018
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Automating Statistical Inference

I These efforts have related goals to deep neural network
modelling.
I network modelling language
I general inference routines

I Consequently, had a huge impact within applied statistics.

I Limited support for discrete data, and model transformations.

I Mixed ability to scale up.
I OK for smaller scale statistical experimentation.
I but they’re starting to scale-up ... (e.g., Greta)
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Automating Statistical Operations
Sachith and Buntine, 2019 (in progress)

(optimised Gibbs sampler for LDA)

I most approaches use general
schemes

I at Monash we’re automating
statistical operations and fast
Gibbs samplers

I focussing on discrete models
I able to generate

optimised/specialised samplers
I able to port down to multicore
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Automating Statistical Inference, cont.

We need to borrow from the statistical “automation” efforts
and combine them with deep neural networks.

This is how we make deep neural networks more probabilistic.
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Something Blue
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Our Experiments with Deep Topic Models
Our comparison:
I evaluate perplexity using last model found:

p(new -doc|data, m̂odel)
I a quick comparison: other small datasets, used 100 topics
I using related code we could get our hands on

(method) 20NG WS TMN
NVLDA 1240 3186 5137

PRODLDA 1226 2997 5041
NVDM (last) 2085 4647 6086
NVDM (best) 1322 2311 3804
LDA-standard 781 983 2026

MetaLDA (ours) 763 944 1891
+ burstiness another -100 to -300!
DocNADE lower again!
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Discussion

I Some deep learning methods aren’t performing well against
other methods.
I oftentimes compared against poor quality variants
I for perplexity and topic coherence

I But some deep neural network models work very well:
I DocNADE (Larochelle & Lauly, NIPS 2012) substantially beats

LDA (we tested it).
I LSTM (Zaheer, Ahmed & Smola, ICML 2017) substantially

beats LDA (has stronger empirical work).
I Both are sequential models.
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Experiments with Deep Topic Models

Claim: Better empirical work is needed. The deep neural
network models aren’t always better.

Claim: An underlying problem is an information deluge in
the machine learning community!

NB. too many conferences and journals ... hard for even the best
to stay on top of all work
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Conclusion

I The Old (classical machine learning) now an advanced
state:
I ensembles, deep models, regularising, Bayesian inference
I a degree of automation starting (JAGS, Stan)

I The New (deep neural networks) works well, but not
always.
I limited in probabilistic methods
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Conclusion: Claim 1

The success of deep neural networks is not due intrinsically to
neural networks.

I it is compiling down to GPUs
I it is ADAM and general purpose inference
I it is learning “in the large”
I it is “deep” models
I it is the influx of creativity
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Conclusion: Claim 2

Probability theory plus Optimisation is the general “theory of
learning.”

I everything else is just special cases
I deep neural nets still has all the same aspects to consider:

I capacity, regularisation, ...
I overfitting, ensembles, ...
I subjectivity, objectivity, belief, ...
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Conclusion: Claim 3

The next frontier in learning is adding back the old ML
techniques and integrating new general statistical inference
into the new computational frameworks.

I Google agrees:
I building TensorFlow Probability

I Nvidia agrees:
I they want to broaden applications beyond deep neural networks

I HMC samplers already done (i.e., Stan)
I starting work for variational inference (Edward)
I ...
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Questions?
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Probabilistic Modelling in Learning

Claim: Probabilistic modelling provides insights and meth-
ods for Machine Learning.

I “full” probabilistic modelling is Bayesian modelling
I probability theory is the only coherent theory of uncertain

reasoning
I concepts such as “Capacity” and “Regularisation” are

important
I no doubt there are more

I deep neural networks provide a new computational paradigm,
but doesn’t change theory of learning
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