Research Career Perspective

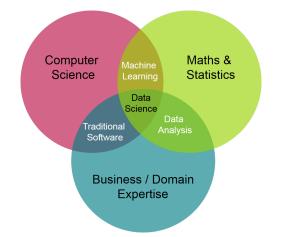
Wray Buntine

Professor in Faculty of IT Director of Master of Data Science Monash University http://topicmodels.org

2018-03-23

< □ > < 同 > < 回 > < 回 >

My Research Area



Domain expertise: semi-structured data, NLP, health informatics

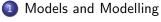
ur		

Research

2018-03-23 2 / 46

Outline

discovery information retrieval hierarchical multinomial semantics ic model latent proportions independent component analysis correlations variable Dirichlet nonnegative matrix factorization variational admixture Gibbs sampling statistical^{machine} learning documentsLSA PLSIBayesian text natural language unsupervised clustering likelihood



- Historical Context
- Research Highlights

< □ > < □ > < □ > < □ > < □ > < □ >

Simple Trees

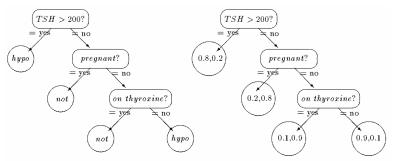


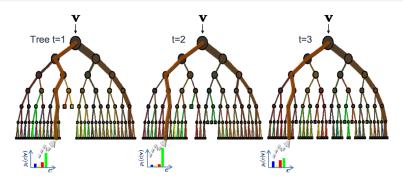
Figure 1: A decision tree and a class probability tree from the thyroid application

classification models used in 80s-90s

Buntine

A D N A B N A B N A B N

Random Forest

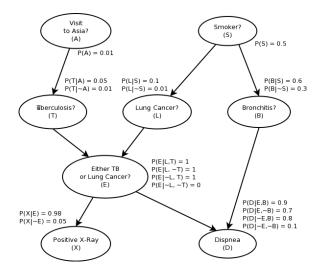


The ensemble model Forest output probability $p(c|\mathbf{v}) = \frac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$ $b(c|\mathbf{v})$ from TowardsDataScience.com

state of the art classification model from Breiman → Ξ →

< < >>

Bayesian Network



diagnostic models used since 90s

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bayesian Network with Plate

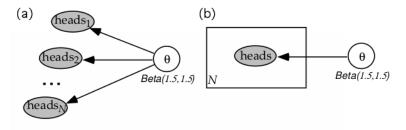


Figure 13: Tossing a coin: model without and with a plate

turn Bayesian network into a modelling language for machine learning

untine

- 4 回 ト 4 ヨ ト 4 ヨ ト

Linear Regression Model

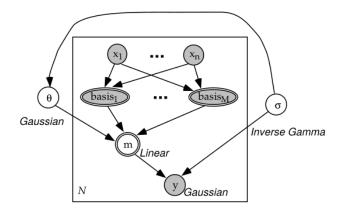


Figure 20: The linear regression problem

e.g. linear regression with non-linear basis functions and heterogeneous variance

Buntine

Linear Regression, Solution

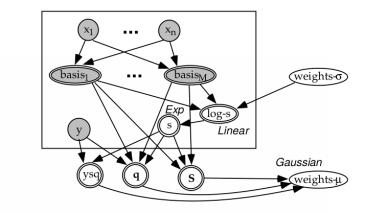


Figure 33: The heterogeneous variance problem with the plate simplified

the computation version derived from the model

・ロト ・四ト ・ヨト ・ヨト

Algorithms/Software for Machine Learning

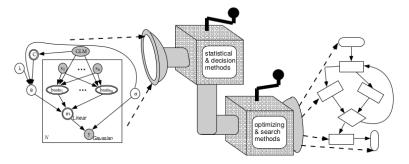


Figure 1: A software generator

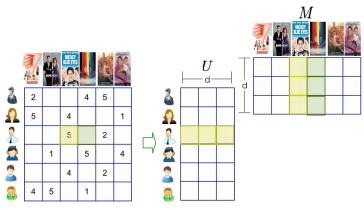
my broader vision, back in 1994!

see "Operations for Learning with Graphical Models", Buntine, JAIR 1994

Buntine

・ロト ・回ト ・ヨト

Recommender System as Matrix Factorisation



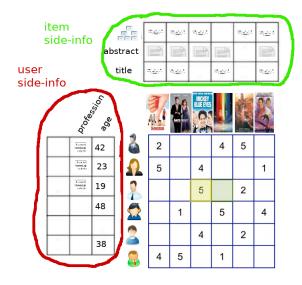
(from Alexandros Karatzoglou, Recommender Systems, 2013)

- a matrix factorisation model used
- introduces latent variables called "topics" or "components".

Buntine

2018-03-23 10 / 46

Recommender System with Side Information

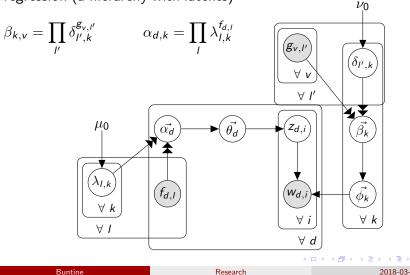


- regress from side information
- **onto** user-item recommendations

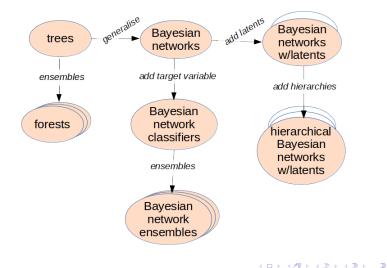
< 回 > < 三 > < 三 >

RecSys with Side-Info, model

matrix factorisation using gamma regression (a hierarchy with latents)



Modelling Summary



в			

2018-03-23 13 / 46

Outline

discovery information retrieval hierarchical multinomial semantics ic model latent proportions independent component analysis correlations variable Dirichlet nonnegative matrix factorization variational admixture Gibbs sampling statistical machine learning documents LSA PLSIBayesian text natural language unsupervised clustering likelihood

2 Historical Context

Research Highlights

2018-03-23 14 / 46

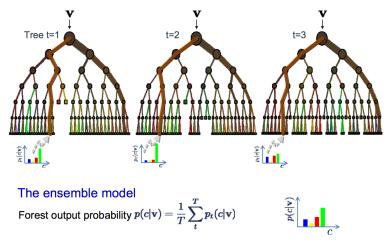
< □ > < □ > < □ > < □ > < □ > < □ >

Historical Context

Bayesian model averaging (BMA) non-parametric hierarchical models

< □ > < □ > < □ > < □ > < □ > < □ >

BMA for Trees



developed early 90s, inspired Breiman's random forests

В			

2018-03-23 15 / 46

BMA for Bayesian Networks

Summaries of the posterior distributions of N for the spina bifda data for all models with posterior probability greater than 0.01. \hat{N} is a Bayes estimate, minimizing a relative squared error loss function

	Posterior		
Model	Prob.	Ñ	2.5%, 97.5%
D - R B	0.373	731	(701, 767)
B - D - R	0.301	756	(714,811)
(B)-(R)-(D)	0.281	712	(681,751)
B R D	0.036	697	(628,934)
Model Averaging	—	731	(682,797)

From Madigan and York, 1995

Buntine

2018-03-23 16 / 46

Bayesian Model Averaging Storyline

- 1990: Graham Williams PhD thesis, ensembles for decision trees.
- 1990: My PhD thesis, BMA for decision trees.
- 1990: York and Madigan develop BMA for Bayesian networks.
- 1994: Breiman developed bagging (or random forests, tree ensembles) for trees as a Frequentist response:
 - random forests
 - $\rightarrow\,$ still one of the top performing classification algorithms
- 1995: Willems, Shtarkov, Tjalkens adapt BMA for n-grams, context tree weighting (CTW) for lossless compression.

Bayesian model averaging and Frequentist counterparts bagging/ensembles became dominant paradigms.

(4) (5) (4) (5)

BMA and Non-parametrics Storyline, cont.

- 2006: Y.W. Teh develops hierarchical Pitman-Yor model for n-grams.
- 2009: Gasthaus, Wood, Archambeau, Teh and James develop Sequence Memoizer for n-grams for lossless compression. Beats CTW.
- 2009: Wood and Teh develop Statistical Language Model Domain Adaptation. Further improves n-gram modelling by allowing adaptation.
 - but the algorithm is impractical

Non-parametric Bayesian methods give new life to BMA because they use **substantially better priors** by allowing content to be modelled hierarchically.

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- While somewhat successful, the BMA paradigm based on standard (current in year 2000) methods had reached a limit.
- Solution requires efficient non-parametric hierarchical modelling.
- Which we now have.

Many problems in machine learning are ripe for improvement with better modelling of hierarchical context.

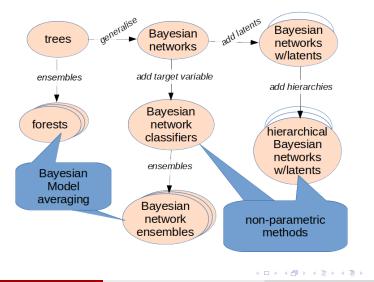
Historical Context

1990s: Pitman and colleagues in mathematical statistics develop statistical theory of partitions, Pitman-Yor process, *etc.*

- 2001-2003: Ishwaran and James develops and "translates" methods usable for machine learning.
 - 2006: Teh develops hierarchical n-gram models using HPYs.
 - 2006: Teh, Jordan, Beal and Blei develop hierarchical Dirichlet processes (HDP), *e.g.* applied to LDA.
- 2006-2011: Chinese restaurant processes (CRPs) go wild!
 - require dynamic memory in implementation,
 - Chinese restaurant franchise,
 - multi-floor Chinese restaurant process,
 - etc.

2011: Chen, Du, Buntine show Chinese restaurants and stick-breaking not needed by introducing **collapsed samplers**.

Modelling Summary, cont.



в			

 ▶ < ≣ >
 ■

 <th</th>

 <th</th>

 <th<

Outline

discovery information retrieval hierarchical multinomial semantics topic model latent proportions independent component analysis correlations variable Dirichlet e matrix factorization variational admixture Gibbs sampling statistical machine learning PLSIBayesiantext natural language unsupervised clustering likelihood

2 Historical Context

3 Research Highlights

- Non-Parametric LDA
- Document Segmentation
- Topic Models with Side Information
- Bayesian Network Classifiers

Research Agenda

(I) < (II) <

Hierarchical Extensions to Various Models

extend matrix factorisation, LDA and BNCs in various ways
to develop state of the art algorithms

Outline

discovery information retrieval hierarchical multinomial semantics topic model latent proportions independent component analysis correlations variable Dirichlef e matrix factorization variational admixture Gibbs sampling statistical machine learning PLSIBayesiantext natural language unsupervised clustering likelihood

2 Historical Context

- Research Highlights
 Non-Parametric LDA
 - Non-Farametric LDA
 - Document Segmentation
 - Topic Models with Side Information
 - Bayesian Network Classifiers

Research Agenda

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

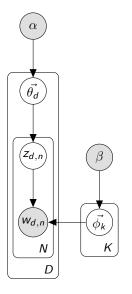
Non-Parametric Topic Model

Material from "Experiments with Non-parametric Topic Models," Buntine and Mishra, <u>KDD 2014</u>.

- Both the "word side" and the "document side" of the model could use hierarcchical priors.
- How could this be implemented efficiently?

We would like to use non-parametric methods to build better topic models.

Evolution of Models: Basic LDA



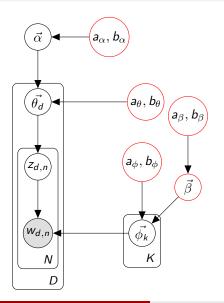
LDA

 α and β are concentrations; originally parameters supplied by user; a symmetric Dirichlet prior on rows of Θ and Φ ; later versions use an asymmetric Dirichlet prior

→ ∃ →

Non-Parametric LDA

Evolution of Models: NP-LDA (2013)



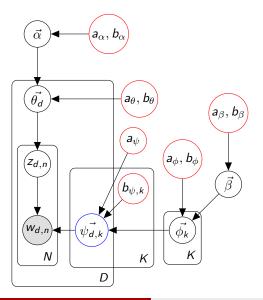
NP-LDA

adds power law on word distributions like Sato and Nakagawa (2010) and estimation of background word distribution

(4) (3) (4) (4) (4)

Non-Parametric LDA

Evolution of Models: Bursty NP-LDA (2014)



NP-LDA with Burstiness

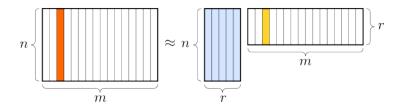
add's burstiness like Doyle and Elkan (2009)

(4) (3) (4) (4) (4)

2018-03-23 26 / 46

Example Topics

- 2691 abstracts from JMLR vol. 1-11
- about 60 words per abstract (after removing stops words)
- about 4600 words in vocabulary
- built 1000 topics
- dimensions $m = 2691 \ n = 4662, \ r = 1000$



	•		900
Buntine	Research	2018-03-23	27 / 46

Example Topics with "posterior"

#25, 0.42%	posteriori expectation likelihood-based analytically maximum likelihood maximization e-step posterior estimation map coming model $(top=14)$
#31, 0.40%	undirected graphical message-passing inference graphs directed posteriori junction graph clique intractable models cliques partition $(top=13)$
#38, 0.37%	dirichlet bayesian priors conjugate prior ill-posed posterior covariance gaussian infer serves distribution analytical distributions $(top=9)$
#58, 0.31%	latent variables discover posterior dependencies variable models modeling hidden parent unobserved part correlations constituent $(top=11)$
#95, 0.22%	particle kalman tracking filter filtering observer state appearance implement dynamics visual occlusion posterior multimodal $(top=5)$
#124, 0.19%	monte carlo chain markov jump mcmc chains reversible iterates mix proposal posterior problematic sampling $(top=2)$
#239, 0.11%	naive classifier bayes averaging logarithmic multiple-instance averaged posterior already counterpart considerably weakly classifications goal $(top=3)$
#678, 0.03%	nondeterministic posterior probabilities cancer hypotheses successively true deterministic distributions worst-case comprise discussed limiting $(top=2)$
#820, 0.02%	estimators constrains sparsely constraints cross-validated insufficient parameters made among posterior context brain correlated fast $(top=1)$

<ロト <問ト < 目ト < 目ト

Outline

discovery information retrieval hierarchical multinomial semantics topic model latent proportions independent component analysis correlations variable Dirichlef e matrix factorization variational admixture Gibbs sampling statistical machine learning PLSIBayesiantext natural language unsupervised clustering likelihood estimation

2 Historical Context

- 3 Research Highlights
 - Non-Parametric LDA
 - Document Segmentation
 - Topic Models with Side Information
 - Bayesian Network Classifiers

Research Agenda

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Document Segmentation

Material from "Topic segmentation with a structured topic model" Du, Buntine and Johnson, <u>NAACL-HLT 2013</u>.

- Both the "word side" and the "document side" of the model could use hierarcchical priors.
- How could this be implemented efficiently?

We would like to use non-parametric methods to build better topic models.

Bayesian Segmentation

Bayesian word segmentation models (Goldwater et al., 2009)

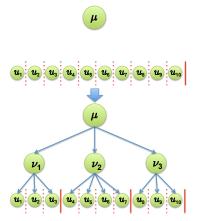
- Learn to place boundaries after phonemes in an utterance.
- A pointwise boundary sampling algorithm: compute the probability of placing a word boundary after each phoneme.

$$u_1$$
 u_2 u_3 u_4 u_5 u_6 u_7 u_8 u_9 u_{10}

• Prediction task: predict where to place segment boundaries.

Hierarchical Bayesian Segmentation

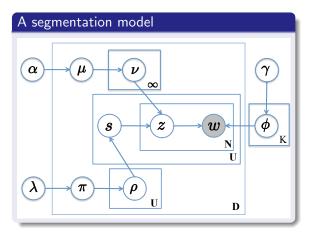
Model Concept:



Hypothesis: simultaneously learning topic segmentation and topic identification should allow better detection of topic boundaries.

В			

Segmentation Model–Generative process



- Generative process
 - $\vec{\phi} \sim \text{Dirichlet}(\vec{\gamma})$
 - $ec{\mu}~\sim~$ Dirichlet($ec{lpha}$)
 - $\pi~\sim~{\sf Beta}(ec{\lambda})$
 - $\vec{\nu} \sim \mathsf{PYP}(a, b, \vec{\mu})$
 - $ho \sim \operatorname{Bernoulli}(\pi)$
 - $z~\sim~{
 m Discrete}(ec{
 u}_s)$
 - $w~\sim~$ Discrete $(ec{\phi_z})$

- z: topic assignment of word w;
- N: the number of words in a passage.

Buntine

2018-03-23 32 / 46

Experiments on two meeting transcripts

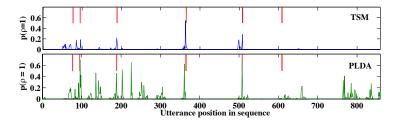


Figure: Probability of a topic boundary, compared with gold-standard segmentation on one ICSI transcript.

Gold Standard	{77,	95,	189,	365,	508,	609,	860}
PLDA	{96,	136,	203,	226,	361,	508,	860}
TSM	{85,	96,	188,	363,	499,	508,	860}

Outline

discovery information retrieval hierarchical multinomial semantics topic model latent proportions independent component analysis correlations variable Dirichlet e matrix factorization variational admixture Gibbs sampling statistical machine learning PLSIBayesiantext natural language unsupervised clustering likelihood estimation

2 Historical Context

3 Research Highlights

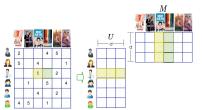
- Non-Parametric LDA
- Document Segmentation
- Topic Models with Side Information
- Bayesian Network Classifiers

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Topic Model with Side Information

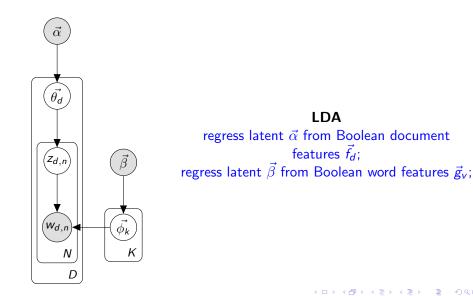
Material from "MetaLDA: a Topic Model that Efficiently Incorporates Meta information," Zhao, Du and Buntine, <u>ICDM 2017</u>.

- documents come with side info.: tags, author, etc.
- words come with side info.: WordNet, deep neural network, embeddings



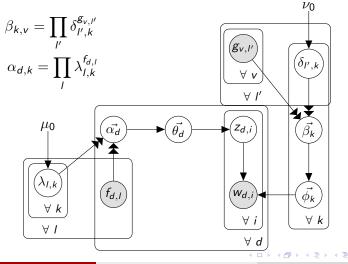
We would like to use the side information to build better topics and matrix factorisations

Evolution of Models: Add Side Information to LDA



Topic Model with Side Information

Gamma regression: topic priors $\vec{\alpha}_d$ and word priors $\vec{\beta}_k$ constructed as



Perplexity Results on Short Text

ExtLDA = our algorithm

ExtLDA-no = our algorithm with no side information

(variant of earlier NP-LDA)

 $\mathsf{DMR}=\mathsf{previous}$ state of the art algorithm using logistic regression

	Web Snippets corpus				Tag My News corpus					
	50	100	150	200	50	100	150	200		
LDA	961	878	869	888	1969	1873	1881	1916		
ExtLDA	774	627	572	534	1657 1415 1304 12					
ExtLDA-no	884	733	671	625	1800	1800 1578 1469 14				
DMR	845	683	607	562	1750	50 1506 1391 1				
LF-LDA	1162 1076 1016 1012				2436	2404	2394	2396		
WF-LDA	894 839 827 842				1853 1766 1830 1854					
LLDA	1543				2958					
PLLDA	5	10	20	50	5	10	20	50		
FLLDA	1060	886	735	642	2181	1863	1647	1456		

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

discovery information retrieval hierarchical multinomial semantics topic model latent proportions independent component analysis correlations variable Dirichlet e matrix factorization variational admixture Gibbs sampling statistical machine learning PLSIBayesiantext natural language unsupervised clustering likelihood

2 Historical Context

3 Research Highlights

- Non-Parametric LDA
- Document Segmentation
- Topic Models with Side Information
- Bayesian Network Classifiers

(I) < (II) <

Simple BNCs

Prediction task: predict Y given $X_1, ..., X_4$

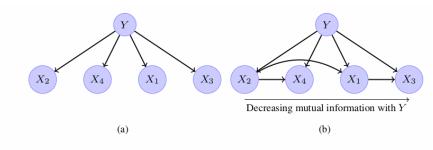


Fig. 1 Example BNC structures: (a) Naïve Bayes, (b) kDB-1

Bayesian Network Classifiers make the target variable the root of the network. More parents means more complex model, and sometimes better classification.

|--|

< □ > < □ > < □ > < □ > < □ > < □ >

BNCs with Hierarchical Priors

- Add Dirichlet process priors to the class probability tables of the BNC.
- Yields far better probability estimates during learning
- Substantially beats existing methods for BNCs
- Without ensembles: better than Random Forests.
- Scales on larger data, comparable to XGBoost (another tree algorithm).
- With ensembles: substantially better than Random Forests.

to appear in "Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes," Peptitjean , Buntine, Webb and Zaidi, ECML-PKDD 2018

un		

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

discovery information retrieval hierarchical multinomial semantics ic model latent proportions independent component analysis correlations variable Dirichlet nonnegative matrix factorization variational admixture Gibbs sampling statistical^{machine} learning documentsLSA PLSIBayesian text natural language unsupervised clustering likelihood

Historical Context

Research Agenda

< □ > < □ > < □ > < □ > < □ > < □ >

Motivation

- Deep neural networks (DNNs) are broadly successful (partially) because of ease of implementation.
- Probability networks allow broad range of models complementing DNNs.
- Statistic processes particular are more challenging for the "non-initiates" to use and implement.
- We have realised our techniques can be automated!

Research Goal

Goal

How to build support tools, like those used for deep neural networks, for probability network models on semi-structured data?

So we would like:

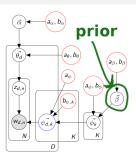
- ability to turn network specification into code,
- Ilexible range of models supported,
- state of the art algorithms,
- compilation down to CPU clusters or GPUs.
 - Our group is currently exploring the items 1-3.
 - We're also exploring the better neural net methods.

э 2018-03-23 42 / 46

3

Buntine

Understanding the Word Prior $\vec{\beta}$

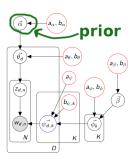


- word prior $\vec{\beta}$ corresponds to a background topic (with PYPs to make Zipfian)
- all topics $\vec{\phi}_k$ are variants of it
- "topical" words are reduced and "stop" words are increased compared to collection frequency
- word w importance for topic k can be measured as $\phi_{k,w}/\beta_w$

395 Reuters RCV1 news articles from 1996 containing "church".

$ec{eta}$ background (high eta_w)	the of to a in and 's was on for by telephone said sick fighting with as at is republican land shortly he remains difficult voice shown mary inside done travelled
topical	diana teresa missionaries russia parker elizabeth bowles camilla churchill
(high df _w / β_w)	winston harriman pamela her quoted princess pontiff prince navarro-valls
	dies kremlin averell parkinson
topic #1	'm else something n't everyone someone my stand i me like truth always
	really going do you ran know similar lover things look sun think 've

Understanding the Topic Prior $\vec{\alpha}$

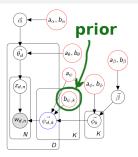


- topic prior $\vec{\alpha}$ corresponds to a expected occurrence of topic
- all document topics $\vec{\theta}_d$ are variants of it
- uses Dirichlet processes

395 Reuters RCV1 news articles from 1996 containing "church".

#2	quoted declined saying reports	#47	nazi nazis germany german war
5.05%	position further talks sought	1.00%	jews recalled forces wartime
#4	pope vatican navarro-valls pon-	#48	estimated sold york company es-
2.28%	tiff solidarity 76-year-old	1.85%	tate island percent sell money
#5	diana charles bowles parker	#49	art works culture includes cul-
1.90%	prince camilla princess elizabeth	0.98%	tural st boris programme show

Understanding the Topic Confidence $b_{\psi,k}$



- topic confidence $b_{\psi,k}$ corresponds to a concentration parameter (inverse variance) when generating $\vec{\psi}_{d,k}$ from $\vec{\phi}_k$
- large values means $\vec{\psi}_{d,k}$ is a copy of $\vec{\phi}_k$
- low values means $ec{\psi}_{d,k}$ differs greatly from $ec{\phi}_k$
 - if really low, its a "rubbish" topic

8616 Reuters RCV1 news articles from 1996 containing "person".

#2	willingness guarantor caution definite	#199 royalties michelle job lopez earns
2605	absences disgruntled seriousness ma-	3.57 hungarian-born eating credits
	noeuvring govern instability	#200 penguin birthdays 1000 abc com-
#4	detractors predecessors illustrious	2.92 piled wheel mausoleum 1800 provoke
2271	front-runner outsider credentials flair	timetable budapest
	courteous woo self-effacing married	#194 spa verdicts korzhakov beginnings
#9	teresa missionaries woodlands birla	1.41 burmese ethics betrayed blair fujimori
2153	pacemaker gutters nun calcutta	heroin

General Methods on Networks: Summary

- There is a rich variety of methods for doing inference and learning on complex probabilistiic networks.
- Making it more automatic is our challenge.
- Existing software from statistics indicates feasibility:
 - <u>BUGS</u>
 - Just Another Gibbs Sampler (JAGS)
 - <u>Stan</u>

Bur

• Existing DNN software suggests implementation ideas.

I am writing a text-book targeted at 3rd year data science students on **probability networks for machine learning**.

	٩.	< 🗗 >	1 =		• ≣ ▶	-2	4) Q (4
intine	Research			20	18-03-23		46 / 46