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Background Motivation

Information Overload

langwitches’ photostream @ Flickr

We need new tools to help us: organize, search, summarise and understand
information. The field of Information Access serves this purpose.
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Background Motivation

Information Warfare

Definition: ”the use and management of information in pursuit of a
competitive advantage over an opponent.”

Email spam, link spam, etc.

Whole websites are fabricated with fake content to trick search engines.
Spammers using social networks to personalise attacks (Nov. 2011).

BBC reports trust in information on the web is being damaged “by
the huge numbers of people paid by companies to post comments”
(Dec. 2011).

It’s an information war out there on the internet between consumers (i.e.,
you), companies, not-for-profits, voters, parties, employees, bureaucrats,
academics, ....
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Background Probability Vector Networks
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Background Probability Vector Networks

Probability Vectors

We often have probability vectors for:

the next word given (n − 1) previous,

an author/conference/corporation to be linked to/from a
webpage/patent/citation,

part-of-speech of a word in context,

hashtag in a tweet given the author.

We need to work with distributions over probability vectors for:

inheritance and sharing of information;

networks of probability vectors;

inference and learning.
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Background Probability Vector Networks

Sharing/Inheritance with a Probability Hierarchy

~φ

~θ1 ~θ2

~θ1,1
~θ1,2

~θ2,1 ~θ2,2

We might model a set of vocabularies/documents hierarchically:

~θ1 ∼ Dirichlet
(
α0
~φ
)

~θ1,2 ∼ Dirichlet
(
α1
~θ1

)
Statistical estimation with these generally difficult:

...
1

Beta
(
α1
~θ1

)∏
k

θ
α1θ1,k−1
1,2,k

∏
k

θ1,k
α1φk−1...

(N.B. fixed point MAP solutions exist for hierarchies)
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Background Probability Vector Networks

Overview: Latent Semantic Modelling

Variety of component and network models can be made
non-parametric with deep probability vector networks.

Newer fast methods for training deep probability vector networks:

Chinese Restaurant processes for Pitman-Yor and Dirichlet Processes
seems mostly poor;
stick-breaking appears to interact badly with variational methods;
the minimum path assumption can be poor;
concentration parameter often should be fit.

Allows efficient modelling of latent semantics:

semantic resources to integrate (WordNet, sentiment dictionaries, etc.),
inheritance and shared learning across multiple instances,
hierarchical modelling,
deep latent semantics,
integrating semi-structured and networked content,

i.e. Same as deep neural networks!
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Background Old School Probabilistic Reasoning
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Background Old School Probabilistic Reasoning

Latent Dirichlet Allocation

wd,n ~φk

zd,n

~θd

α

β

N

D

K

LDA Model

∀d ~θd ∼ DirichletK (~α)

∀k ~φk ∼ DirichletW (~β)

∀d ,n zd ,n ∼ Categorical(~θd)

∀d ,n wd ,n ∼ Categorical(~φzd,n)

Collapsed Posterior for Gibbs Sampling

∏
d

BetaK

(
~n~θd + ~α

)
BetaK (~α)

∏
k

BetaW

(
~n~φk + ~β

)
BetaW

(
~β
)
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Background Old School Probabilistic Reasoning

Learning Algorithms with Dirichlets

Common text-book algorithms/methods in modern
machine-learning/statistics rely on Dirichlet distributions combined with:

trees, tables;

graphs, networks;

context free grammars;

Algorithms on these combine Dirichlet normalizers with:

model search;

model averaging;

EM algorithm;

etc.

Arguably, many of these are of poor/mixed quality.
e.g., probabilistic context free grammars, decision trees
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Background Old School Probabilistic Reasoning

Context Free Grammar

In a probabilistic context free grammar, probabilities are associated with
each rule, and rules apply independently of context.
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Background Old School Probabilistic Reasoning

Probabilistic Context Free Grammar, cont.

Doesn’t perform well in practice because statistically, context matters.

Google bought Youtube.

Previous words, or higher parts-of-speech do affect probabilities.

State-of-the-art NLP systems “hack” context by making probabilities
dependent on:

previous few words in the input stream;
previous few parts-of-speech higher in the parse tree;
head (“main”) words for nodes higher in the parse tree.

Alternatively, they introduce specialised parts-of-special to introduce
context.

This requires algorithmic sophistication!
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Background Old School Probabilistic Reasoning

Bayesian Networks
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Background Old School Probabilistic Reasoning

Bayesian Model Averaging (BMA) for Bayesian Networks

From Madigan and
York, 1995

Buntine (Monash) LSM Tuesday 27th January, 2015 12 / 100



Background Old School Probabilistic Reasoning

Bayesian Model Averaging (BMA) for Bayesian Networks,
cont

Build a pool of “good” models (i.e., the graphical structures) based on the
training data: Good-Models(X ).

BMA estimate of probability for new data ~x given training sample X is

p(~x |X ) ≈
∑

M∈Good-Models(X )

p(M|X )∑
M∈Good-Models(X ) p(M|X )

p(~x |M,X )

Question: how do we build “good” models given there are a combinatoric
number?
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Background Old School Probabilistic Reasoning

Bayesian Model Averaging and Non-parametrics Storyline

1990: My PhD thesis, BMA for decision trees.

1990: York and Madigan develop BMA for Bayesian networks.

1994: Breiman developed bagging (or random forests) for trees as a
Frequentist response:

→ still one of the top performing classification algorithms

1995: Willems, Shtarkov, Tjalkens adapt BMA for n-grams,
context tree weighting (CTW) for lossless compression.

Bayesian model averaging and Frequentist bagging became dominant
paradigms.
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Background Old School Probabilistic Reasoning

Bayesian Model Averaging and Non-parametrics Storyline,
cont.

2006: Y.W. Teh develops hierarchical Pitman-Yor model for
n-grams.

2009: Gasthaus, Wood, Archambeau, Teh and James develop
Sequence Memoizer for n-grams for lossless compression.
Beats CTW.

2009: Wood and Teh develop Statistical Language Model Domain
Adaptation. Further improves n-gram modelling by allowing
adaptation.

but the algorithm is impractical

Non-parametric Bayesian methods give new life to BMA because they
use substantially better priors.
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Background Old School Probabilistic Reasoning

Motivation

While somewhat successful, the BMA paradigm based on
standard (simple) conjugate priors has reached a limit for some
models consisting of Dirichlets.

But this requires efficient non-parametric modelling.

Which we now have.

Many problems in machine learning are ripe for improvement with
better modelling of context.
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Non-parametric Bayesian Methods Hierarchical Dirichlet and Pitman-Yor Processes
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Non-parametric Bayesian Methods Hierarchical Dirichlet and Pitman-Yor Processes

Dirichlet Process

The Dirichlet Process (DP) has two arguments DP (α,H(·)) :

H(·) is another distribution that is the mean of the DP

when H(·) = ~µ, applied to a finite probability vector ~µ of dimension
K , the DP and the Dirichlet are identical:

DirichletK (α, ~µ) = DP (α, ~µ) .

The Pitman-Yor Process (PYP) has three arguments PYP (d , α,H(·)) :

extends the DP with an extra parameter d , and is more suited to
Zipfian data,

Buntine (Monash) LSM Tuesday 27th January, 2015 17 / 100



Non-parametric Bayesian Methods Hierarchical Dirichlet and Pitman-Yor Processes

Bayesian Idea: Similar Context Means Similar Word

store . Shivering , he caught a ?

Words in a ? should be like words in ?

though no plural nouns

Words in caught a ? should be like words in a ?

though a suitable object for “caught”

Words in he caught a ? be very like words in caught a ?

“he” shouldn’t change things much
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Non-parametric Bayesian Methods Hierarchical Dirichlet and Pitman-Yor Processes

Bayesian N-grams, cont.

~p·

~p·|b

~p·|b,a

~p·|a ~p·|z

~p·|b,b ~p·|b,z

~p·|b,z,a ~p·|b,z,b ~p·|b,z,z

S = symbol set, fixed or possibly countably infinite

~p· ∼ prior on prob. vectors (initial vocabulary)

~p·|x1
∼ dist. on prob. vectors with mean ~p· ∀x1∈S

~p·|x1,x2
∼ dist. on prob. vectors with mean ~p·|x1

∀x1,x2∈S
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Non-parametric Bayesian Methods Hierarchical Dirichlet and Pitman-Yor Processes

Historical Context

1990s: Pitman and colleagues in mathematical statistics develop
statistical theory of partitions, Pitman-Yor process, etc.

2001-2003: Ishwaran and James develops and “translates” methods
usable for machine learning.

2006: Teh develops hierarchical n-gram models using HPYs.

2006: Teh, Jordan, Beal and Blei develop hierarchical Dirichlet
processes (HDP), e.g. applied to LDA.

2006-2011: Chinese restaurant processes (CRPs) go wild!

require dynamic memory in implementation,
Chinese restaurant franchise,
multi-floor Chinese restaurant process,
etc.

2011: Chen, Du, Buntine show Chinese restaurants and
stick-breaking not needed by introducing block table
indicator samplers.
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Non-parametric Bayesian Methods PYPs on Discrete Data
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Non-parametric Bayesian Methods PYPs on Discrete Data

The Ideal Hierarchical Component?

We want a magic distribution that looks like a multinomial likelihood in ~θ.

~θ

~p

x

~p ∼ Magic
(
α, ~θ

)
xn ∼ Discrete(~p) ∀n

~θ

~n

p
(
~n
∣∣∣α, ~θ,N)

= Fα(~n)
∏
k

θtkk

where
∑
k

nk = N
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Non-parametric Bayesian Methods PYPs on Discrete Data

The PYP/DP is the Magic

The PYP/DP plays the role of the
magic distribution.

However, the exponent tk for the
θ now becomes a latent variable,
so needs to be sampled as well.

The tk are constrainted:

tk ≤ nk
tk > 0 iff nk > 0

The ~t act like data for the next
level up involving ~θ.

~θ

~n, ~t

p
(
~n, ~t
∣∣∣ d , α, ~θ,N)

= Fd ,α(~n, ~t)
∏
k

θtkk

where
∑
k

nk = N
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Non-parametric Bayesian Methods PYPs on Discrete Data

Interpreting the Auxiliary Counts

Interpretation: tk is how much of
the count nk that affects the parent
probability (i.e. ~θ).

If ~t = ~n then the sample ~n
affects ~θ 100%.

When nk = 0 then tk = 0,
no effect.

If tk = 1, then the sample of
nk affects ~θ minimally.

~θ

~n, ~t

p
(
~n, ~t
∣∣∣ d , α, ~θ,N)

= Fd ,α(~n, ~t)
∏
k

θtkk

where
∑
k

nk = N
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Non-parametric Bayesian Methods PYPs on Discrete Data

The Multinomial-Pitman-Yor

Definition of Multinomial-Pitman-Yor

Given a discount d and concentration parameter α, a probability vector ~θ
of dimension L, and a count N, the multinomial-Pitman-Yor creates count
vector samples ~n of dimension K , and auxiliary counts ~t (constrained by

~n). Now (~n, ~t) ∼ MultPYP
(
d , α, ~θ,N

)
denotes

p
(
~n, ~t
∣∣∣N,MultPYP, d , α, ~θ

)
=

(
N

~n

)
(α|d)T
(α)N

K∏
k=1

Snktk ,dθ
tk
k

where T =
∑K

k=1 tk .

Use rising factorial or Pochhammer symbol
(x |y)n = x(x + y)...(x + (n − 1)y), and (x)n = (x |1)n.

Buntine (Monash) LSM Tuesday 27th January, 2015 24 / 100



Non-parametric Bayesian Methods PYPs on Discrete Data

Why We Prefer DPs and PYPs over Dirichlets!

p
(
~x
∣∣∣N ,MultDir, α, ~θ

)
∝

1

(α)N

K∏
k=1

(αθk)(αθk + 1) · · · (αθk + nk − 1)

p
(
~x , ~t
∣∣∣N ,MultPYP, d , α, ~θ

)
∝ (α|d)T

(α)N

K∏
k=1

Snktk ,dθk
tk

For the PYP, the θk just look like multinomial data, but you have to
introduce a discrete latent variable ~t.

For the Dirichlet, the θk are in a complex gamma function.
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Non-parametric Bayesian Methods PYPs on Discrete Data

How Many Tables? Why Minimal Path Assumption is Poor
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Non-parametric Bayesian Methods PYPs on Discrete Data

CRP Samplers versus MultPYP Samplers

CRP sampling needs to keep track of full seating plan, such as counts per
table (thus dynamic memory).

2" 3" 4" 5"

Sampling using the MultPYP formula only needs to keep the number of
tables. So rearrange configuration, only one table per dish and mark
customers to indicate how many tables the CRP would have had.
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Non-parametric Bayesian Methods Working the N-gram Model

A Simple N-gram Style Model

~θ1

~p1 ~p2 ~p3

x1 x2 x3

~θ2

~p4 ~p5 ~p6

x4 x5 x6

~µ

p(~µ)p
(
~θ1

∣∣∣ ~µ) p (~θ2

∣∣∣ ~µ)
p
(
~p1

∣∣∣ ~θ1

)
p
(
~p2

∣∣∣ ~θ1

)
p
(
~p3

∣∣∣ ~θ1

)
p
(
~p4

∣∣∣ ~θ2

)
p
(
~p5

∣∣∣ ~θ2

)
p
(
~p6

∣∣∣ ~θ2

)
∏
l

p
n1,l

1,l

∏
l

p
n2,l

2,l

∏
l

p
n3,l

3,l

∏
l

p
n4,l

4,l

∏
l

p
n5,l

5,l

∏
l

p
n6,l

6,l
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Non-parametric Bayesian Methods Working the N-gram Model

Using the Evidence Formula

We will repeatedly apply the evidence formula

p
(
~n, ~t
∣∣N,MultDP, α

)
=

αT

(α)N

K∏
k=1

Snktk ,0H(k)tk

= Fα(~n, ~t)
K∏

k=1

H(k)tk

to marginalise out all the probability vectors.
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Non-parametric Bayesian Methods Working the N-gram Model

Apply Evidence Formula to Bottom Level

Start with the full posterior:

p(~µ)p
(
~θ1

∣∣∣ ~µ) p (~θ2

∣∣∣ ~µ)
p
(
~p1

∣∣∣ ~θ1

)
p
(
~p2

∣∣∣ ~θ1

)
p
(
~p3

∣∣∣ ~θ1

)
p
(
~p4

∣∣∣ ~θ2

)
p
(
~p5

∣∣∣ ~θ2

)
p
(
~p6

∣∣∣ ~θ2

)
∏
l

p
n1,l

1,l

∏
l

p
n2,l

2,l

∏
l

p
n3,l

3,l

∏
l

p
n4,l

4,l

∏
l

p
n5,l

5,l

∏
l

p
n6,l

6,l .

Marginalise out each ~pk but introducing new auxiliaries ~tk

p(~µ)p
(
~θ1

∣∣∣ ~µ) p (~θ2

∣∣∣ ~µ)
Fα(~n1, ~t1)Fα(~n2, ~t2)Fα(~n3, ~t3)

∏
l

θ
t1,l+t2,l+t3,l

1,l

Fα(~n4, ~t4)Fα(~n5, ~t5)Fα(~n6, ~t6)
∏
l

θ
t4,l+t5,l+t6,l

2,l .

Thus ~t1 +~t2 +~t3 looks like data for ~θ1 and ~t4 +~t5 +~t6 looks like data for ~θ2
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Non-parametric Bayesian Methods Working the N-gram Model

Apply Evidence Formula, cont.

~θ1

~n1, ~t1 ~n2, ~t2 ~n3, ~t3

~θ2

~n4, ~t4 ~n5, ~t5 ~n6, ~t6

~µ

Terms left in ~nk and ~tk , and passing up∏
l

θ
t1,l+t2,l+t3,l

1,l

∏
l

θ
t4,l+t5,l+t6,l

2,l ,

as pseudo-data to the prior on ~θ1 and ~θ2.
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Non-parametric Bayesian Methods Working the N-gram Model

Apply Evidence Formula, cont.

Repeat the same trick up a level; marginalising out ~θ1 and ~θ1 but
introducing new auxiliaries ~s1 and ~s2

p(~µ)Fα(~t1 + ~t2 + ~t3, ~s1)Fα(~t4 + ~t5 + ~t6, ~s2)
∏
l

µ
s1,l+s2,l

l

Fα(~n1, ~t1)Fα(~n2, ~t2)Fα(~n3, ~t3)Fα(~n4, ~t4)Fα(~n5, ~t5)Fα(~n6, ~t6) .

~s1

~n1, ~t1 ~n2, ~t2 ~n3, ~t3

~s2

~n4, ~t4 ~n5, ~t5 ~n6, ~t6

~µ

Again left with pseudo-data to the prior on ~µ.
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Non-parametric Bayesian Methods Working the N-gram Model

Apply Evidence Formula, cont.

Finally repeat at the top level with new auxiliary ~r
Fα(~s1 + ~s2, ~r)Fα(~t1 + ~t2 + ~t3, ~s1)Fα(~t4 + ~t5 + ~t6, ~s2)

Fα(~n1, ~t1)Fα(~n2, ~t2)Fα(~n3, ~t3)Fα(~n4, ~t4)Fα(~n5, ~t5)Fα(~n6, ~t6)

where

~n1, ~n2,... are the data at the leaf nodes, ~t1, ~t2,... their auxiliary counts
~s1 are auxiliary counts constrained by ~t1 + ~t2 + ~t3,
~s2 are auxiliary counts constrained by ~t4 + ~t5 + ~t6,
~r are auxiliary counts constrained by ~s1 + ~s2,

~s1

~n1, ~t1 ~n2, ~t2 ~n3, ~t3

~s2

~n4, ~t4 ~n5, ~t5 ~n6, ~t6

~r
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Non-parametric Bayesian Methods Working the N-gram Model

The Worked N-gram Style Model

Original posterior in the form:

p(~µ)p
(
~θ1

∣∣∣ ~µ) p (~θ2

∣∣∣ ~µ)
p
(
~p1

∣∣∣ ~θ1

)
p
(
~p2

∣∣∣ ~θ1

)
p
(
~p3

∣∣∣ ~θ1

)
p
(
~p4

∣∣∣ ~θ2

)
p
(
~p5

∣∣∣ ~θ2

)
p
(
~p6

∣∣∣ ~θ2

)
∏
l

p
n1,l

1,l

∏
l

p
n2,l

2,l

∏
l

p
n3,l

3,l

∏
l

p
n4,l

4,l

∏
l

p
n5,l

5,l

∏
l

p
n6,l

6,l

Collapsed posterior in the form:

Fα(~s1 + ~s2, ~r)Fα(~t1 + ~t2 + ~t3, ~s1)Fα(~t4 + ~t5 + ~t6, ~s2)

Fα(~n1, ~t1)Fα(~n2, ~t2)Fα(~n3, ~t3)Fα(~n4, ~t4)Fα(~n5, ~t5)Fα(~n6, ~t6)

where
~n1, ~n2,... are the data at the leaf nodes, ~t1, ~t2,... their auxiliary counts

~s1 are auxiliary counts constrained by ~t1 + ~t2 + ~t3,

~s2 are auxiliary counts constrained by ~t4 + ~t5 + ~t6,

~r are auxiliary counts constrained by ~s1 + ~s2,
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Non-parametric Bayesian Methods Working the N-gram Model

The Worked N-gram Style Model, cont.

Note the probabilities are then estimated from the auxiliary counts during
MCMC. This is the standard recursive CRP formula.

~̂µ =
~s1 + ~s2

S1 + S2 + α
+

α

S1 + S2 + α

(
~r

R + α
+

R

R + α

1

L

)
~̂θ1 =

~t1 + ~t2 + ~t3

T1 + T2 + T3 + α
+

α

T1 + T2 + T3 + α
~̂µ

~̂p1 =
~n1

N1 + α
+

α

N1 + α
~̂θ1

Note in practice:

the α is varied at every level of the tree and sampled as well,

the PYP is used instead because words are often Zipfian
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Non-parametric Bayesian Methods Working the N-gram Model

The Worked N-gram Style Model, cont.

What have we achieved:

Bottom level probabilities (~p1, ~p2,...) marginalised away.

Each non-leaf probability vector (~µ, ~θ1,...) replaced by corresponding
constrained auxiliary count vector (~r , ~s1,...) as psuedo-data.

The auxiliary counts correspond to how much of the counts get
inherited up the hierarchy.

This allows a collapsed sampler in a discrete (versus continuous)
space.
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Non-parametric Bayesian Methods Working the N-gram Model

MCMC Problem Specification for N-grams

Build a
Gibbs/MCMC
sampler for:

~s1

~n1, ~t1 ~n2, ~t2 ~n3, ~t3

~s2

~n4, ~t4 ~n5, ~t5 ~n6, ~t6

~r

(~µ) · · · αR

(α)S1+S2

K∏
k=1

(
Ss1,k+s2,k

rk ,0

1

K rk

)

(~θ1, ~θ2) · · · αS1

(α)T1+T2+T3

K∏
k=1

St1,k+t2,k+t3,k

s1,k ,0

αS2

(α)T4+T5+T6

K∏
k=1

St4,k+t5,k+t6,k

s2,k ,0

(∀k~pk) · · ·
6∏

l=1

(
K∏

k=1

Snl,ktl,k ,0

)
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Non-parametric Bayesian Methods Working the N-gram Model

CRP Samplers versus MultPYP, cont.
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Legend: SSA = ”standard CRP sampler of Teh et al.”
CMGS = “Gibbs sampler using MultPYP posterior”

Mean estimates of the total number of tables T for one of the 20 Gibbs
runs (left) and the standard deviation of the 20 mean estimates (right)
with d = 0, α = 10, K = 50 and N = 500.
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Non-parametric Bayesian Methods Table indicators
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Non-parametric Bayesian Methods Table indicators

Species with Subspecies

Within species there are separate sub-species, pink and orange for type k ,
blue and green for type l .
Chinese restaurant samplers work in this space, keeping track of all counts
for sub-species.
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Non-parametric Bayesian Methods Table indicators

Species with New Species

Within species there are separate sub-species, but we only know which
data is the first of a new sub-species.
Block table indicator samplers work in this space, where each datum has a
Boolean indicator.
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Non-parametric Bayesian Methods Table indicators

Categorical Data plus Table Indicators

~θ

~p

x

t

~p

x r

LHS = categorical form with sample of
discrete values x1, ..., xN drawn
from categorical distribution ~p
which in turn has mean ~θ

RHS = species sampling form where data
is now pairs (x1, r1)..., (xN , rN)
were rn is a Boolean indicator
saying “is new subspecies”

rn = 1 then the sample xn was drawn
from the parent node with
probability θxn , otherwise is
existing subspecies
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Non-parametric Bayesian Methods Table indicators

Table Indicators

Definition of table indicator

Instead of considering the multinomial-Pitman-Yor with counts (~n, ~t), work
with sequential data with individual values (x1, r1), (x2, r2), ..., (xN , rN).
The table indicator rn indicates that the data contributes one count up to
the parent probability.

So the data is treated sequentially, and taking statistics of ~x and ~r yields:

nk := counts of k ’s in ~x ,

=
∑N

n=1 1xn=k ,
tk := counts of k ’s in ~x co-occuring with an indicator,

=
∑N

n=1 1xn=k1rn .
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Non-parametric Bayesian Methods Table indicators

The Categorical-Pitman-Yor

Definition of Categorical-Pitman-Yor

Given a concentration parameter α, a discount parameter d , a probability
vector ~θ of dimension L, and a count N, the categorical-Pitman-Yor
distribution creates a sequence of discrete class assignments and indicators

(x1, r1), ...(xN , rN). Now (~x , ~r) ∼ CatPYP
(
d , α, ~θ,N

)
denotes

p
(
~x , ~r

∣∣∣N,CatPYP, d , α, ~θ
)

=
(α|d)T
(α)N

L∏
l=1

Snltl ,dθ
tl
l

(
nl
tl

)−1

where the counts are derived, tl =
∑N

n=1 1xn=l1rl , nl =
∑N

n=1 1xn=l ,

T =
∑L

l=1 tl .
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Non-parametric Bayesian Methods Table indicators

The Categorical- versus multinomial-Pitman-Yor

Multinomial-Pitman-Yor: working off counts ~n, ~t,

p
(
~n, ~t
∣∣∣N,MultPYP, d , α, ~θ

)
=

(
N

~n

)
(α|d)T
(α)N

K∏
k=1

Snktk ,dθ
tk
k

Categorical-Pitman-Yor: working off sequential data ~x , ~r , the counts ~n, ~t
are now derived,

p
(
~x , ~r

∣∣∣N,CatPYP, d , α, ~θ
)

=
(α|d)T
(α)N

K∏
k=1

Snktk ,dθ
tk
k

(
nk
tk

)−1

remove the
(N
~n

)
term because sequential order now matters

divide by
(nk
tk

)
because this is the number of ways of distributing the

tk indicators that are on amongst nk places
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Non-parametric Bayesian Methods Table indicators

Pitman-Yor-Categorical Marginalisation

~θ

~t

x

~n

r

~n = vector of counts of different species (how much
data of each species);
computed from the data ~x

~t = count vector giving how many different
subspecies; computed from the paired data ~x , ~r ;
called number of tables

p
(
~x , ~r

∣∣∣ d , α,PYP, ~θ
)

=
(α|d)T
(α)N

K∏
k=1

θtkk S
nk
tk ,d

(
nk
tk

)−1
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Non-parametric Bayesian Methods Table indicators

Hierarchical Marginalisation

~tp

x

~np

~θ

~p

x

~q

~µ

~tθ~nθ

r xθ

~tµ

y y r yθ

~tq~nq

~nµ

r xµ r yµr xp ~tµ

left is the original probability vector hierarchy, right is the result of
marginalising out probability vectors then

indicators are attached to their originating data as a set

all ~n and ~t counts up the hierarchy are computed from these
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Non-parametric Bayesian Methods Table indicators

CRP Samplers versus MultPYP, cont.

 43

 43.5

 44

 44.5

 45

 45.5

 46

 0  100  200  300  400  500  600  700

M
e
a
n
 e

s
ti
m

a
te

 o
f 
ta

b
le

s

Time (ms)

SSA
BTIGS
CMGS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700

D
e
v
ia

ti
o
n
 f
o
r 

m
e
a
n
 t
a
b
le

s

Time (ms)

SSA
BTIGS
CMGS

Legend: SSA = ”standard CRP sampler of Teh et al.”
CMGS = “Gibbs sampler using MultPYP posterior”

Mean estimates of the total number of tables T for one of the 20 Gibbs
runs (left) and the standard deviation of the 20 mean estimates (right)
with d = 0, α = 10, K = 50 and N = 500.
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Non-parametric Bayesian Methods Table indicators

Better Sampling Methods for HDP and HPYP

Sampling for hierarchical Dirichlet Processes and Pitman-Yor Processes:

The Old: hierarchical Chinese Restaurant Processes (CRP) from Teh
et al. 2006.

The New: block table indicator sampling from Chen, Du and Buntine
2011.

requires no dynamic memory

more rapid mixing so leads to better models

more easily applied to more complex models

demonstrated extensively on different problems!

See http://topicmodels.org , “A tutorial on non-parametric
methods”
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Discrete Feature Vectors Discrete Feature Vectors

Conjugate Discrete Families

Conjugate Family p(x |λ) p(λ) ∝
Bernoulli-Beta λx(1− λ)1−x λα−1(1− λ)β−1δ0<λ<1

Poisson-Gamma 1
x!λ

xe−λ λα−1e−βλ

negtve-Binomial-Gamma 1
x! (λ)x ρ

x(1− ρ)λ λα−1e−βλ

parameters α, β > 0
(λ)x is rising factorial λ(λ+ 1)...(λ+ x − 1)

multinomial-Dirichlet used in LDA

Poisson-Gamma in some versions of NMF

Bernoulli-Beta is the basis of IBP

negative-Binomial-Gamma is not quite a conjugate family; the
negative-Binomial is a “robust” variant of a Poisson
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Discrete Feature Vectors Discrete Feature Vectors

Infinite Vectors

Let ωk ∈ Ω for k = 1, ...,∞ be index points for an infinite vector.

Have infinite parameter vector ~λ =
∑∞

k=1 λkδωk
for λk ∈ (0,∞),

Generate I discrete feature vectors ~xi =
∑∞

k=1 xi ,kδωk
pointwise using

discrete distribution p(xi ,k |λk).

Require only finite number of xi ,k 6= 0 for given i .

This means we need
∑∞

k=1 λk <∞,

assuming lower λk makes xi,k more likely to be zero.

Can arbitrarily rearrange dimensions k since all objects have term∑∞
k=1(·).

Don’t know which dimensions k non-zero so rearrange as needed.

See 2014 ArXiv paper by Lancelot James
(http://arxiv.org/abs/1411.2936).
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Discrete Feature Vectors Discrete Feature Vectors

Generating Infinite Vectors

Almost all λk must be infinitesimally small, so
the prior for λ is not proper. Formally modelled using Poisson processes:

Have Poisson process with points λ, ω on domain
(0,∞)× Ω with rate p(λ|ω)dλG (dω).

For infinite number of points want (cannot normalise)∫ ∞
0

∫
Ω
p(λ|ω)dλG (dω) =∞

To expect
∑∞

k=1 λk <∞, want∫ ∞
0

∫
Ω
λp(λ|ω)dλG (dω) <∞

Parameters to the “distribution” (Poisson process rate) for λ would
control the expected number of non-zero xi ,k .
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Bernoulli-Beta Process (Indian Buffet Process)

infinite Boolean vectors ~xi with a finite number of 1’s;

each parameter λk is an independent probability,

p(xi ,k |λk) = λ
xi,k
k (1− λk)1−xi,k

to have finite 1’s, require
∑

k λk <∞
improper prior (Poisson process rate) is the 3-parameter Beta process

p(λ|α, β, θ) = θλ−α−1(1− λ)α+β−1

(some versions add additional constants with θ)

is in improper Beta because seeing “1” makes it proper:∫ 1

λ=0
p(x = 1|λ)p(λ)dλ = θBeta(1− α, α + β)
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Discrete Feature Vectors Conjugate Discrete Processes

Conjugate Discrete Processes

Each conjugate family has a corresponding non-parametric version:

Uses the improper versions of the prior p(λ|ω)

e.g. for Gamma, Beta, Dirichlet

Want to generate a countably infinite number of λ but have almost
all infinitesimally small.

Theory done with Poisson processes, see 2014 ArXiv paper by
Lancelot James (http://arxiv.org/abs/1411.2936).

Presention here uses the more informal language of “improper priors,”
but the correct theory is Poisson processes.
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Discrete Feature Vectors Conjugate Discrete Processes

Conjugate Discrete Processes, cont.

Non-parametric versions of models for discrete feature vectors:

Process Name p(x |λ) p(λ)

Poisson-Gamma 1
x!λ

xe−λ θλ−α−1e−βλ

Bernoulli-Beta λx(1− λ)1−x θλ−α−1(1− λ)α+β−1δ0<λ<1

negtve-Binomial-Gamma 1
x! (λ)xρ

x(1− ρ)λ θλ−α−1e−βλ

β, θ > 0
0 ≤ α < 1

In common they make the power of λ lie in (−2,−1] to achieve the
“improper prior” effect.

Term θ is just a general proportion to uniformally increase number of
λk ’s in any region.

Whereas α and β control the relative size of the λk ’s.
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Discrete Feature Vectors Conjugate Discrete Processes

Conjugate non-Parametric Discrete Families, cont.

Given λ, probability of I samples with at least one non-zero entry is(
1− p(xi ,k = 0|λ)I

)
.

By Poisson process theory, expectation of this (in general case)

ΨI =

∫
Ω

∫ ∞
0

(
1− p(xi ,k = 0|λ)I

)
ρ(λ|ω)dλG0(dωk)

Call ΨI the Poisson non-zero rate, a function of I and the underlying
distributions.

With I vectors, number of non-zero dimensions K is Poisson with rate
ΨI , having probability

1

K !
e−ΨI ΨK

I .
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Discrete Feature Vectors Conjugate Discrete Processes

Posterior Marginal

With I vectors, number of non-zero dimensions K is Poisson with rate
ΨI , having probability

1

K !
e−ΨI ΨK

I .

Take particular dimension ordering (remove 1
K ! ) and replace “not all

zero” by actual data, xi ,1, ..., xi ,K to get:

e−ΨI

K∏
k=1

p(x1,k , ..., xi ,k , ωw ) .

Expand using model to get posterior marginal:

p(~x1, ..., ~xI , ~ω) = e−ΨI

K∏
k=1

(∫ ∞
0

(
I∏

i=1

p(xi ,k |λ)

)
ρ(λ|ω)dλ

)
G0(dωk)

Buntine (Monash) LSM Tuesday 27th January, 2015 56 / 100



Discrete Feature Vectors Worked Examples

Outline

1 Background

2 Non-parametric Bayesian Methods

3 Discrete Feature Vectors
Discrete Feature Vectors
Conjugate Discrete Processes
Worked Examples

4 High Performance Topic Models (with Swap-
nil Mishra)

5 Twitter Opinion Topic Model (with Kar Wai
Lim)

6 Segmentation with a Structured Topic Model

7 Conclusion

Buntine (Monash) LSM Tuesday 27th January, 2015 57 / 100



Discrete Feature Vectors Worked Examples

Bernoulli-Beta Process (Indian Buffet Process)

The Poisson non-zero rate
trick: use 1− y I = (1− y)

∑I
i=0 y

i

ΨI = θΓ(1− α)
I∑

i=0

Γ(β + α + i)

Γ(β + 1 + i)
.

The marginal for the k-th dimension∫ ∞
0

(
I∏

i=1

p(xi ,k |λ)

)
ρ(λ|ω)dλ = θBeta(ck − α, I − ck + α + β)

where ck is times dimension k is “on,” so ck =
∑I

i=1 xi ,k .

Gibbs sampling xi ,k is thus simple.

Sampling parameters: posterior of θ is Poisson; posterior for β is
log-concave so sampling “easier”.
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Discrete Feature Vectors Worked Examples

Poisson-Gamma Process

The Poisson non-zero rate
trick: use the Laplace exponent from Poisson process theory

ΨI = θ
Γ(1− α)

α
((I + β)α − βα) .

The marginal for the k-th dimension∫ ∞
0

(
I∏

i=1

p(xi ,k |λ)

)
ρ(λ|ω)dλ = θ

(
I∏

i=1

1

xi ,k !

)
Γ(x·,k − α)

(I + β)x·,k−α

where x·,k =
∑I

i=1 xi ,k .

Gibbs sampling the xi ,k is thus simple.

Sampling parameters: posterior of θ is Poisson; posterior of β is
unimodal (and no other turning points) with simple closed form for
MAP.
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Discrete Feature Vectors Worked Examples

Negative-Binomial-Gamma Process

Series of papers for this case by Mingyuan Zhou and colleages.
The Poisson non-zero rate
trick: use the Laplace exponent from Poisson process theory

ΨI = θ
Γ(1− α)

α

((
I log

(
1

1− p

)
+ β

)α
− βα

)
.

The marginal for the k-th dimension∫ ∞
0

(
I∏

i=1

p(xi ,k |λ, p)

)
ρ(λ|ω)dλ

= px·,k

(
I∏

i=1

1

xi ,k !

)∫ ∞
0

(1− p)Iλ

(
I∏

i=1

(λ)xi,k

)
ρ(λ)dλ

Gibbs sampling the xi ,k is more challenging.
keep λ as a latent variable (posterior is log concave);
use approximation (λ)x ≈ λt

∗
Sx
t∗,0 where t∗ = argmaxt∈[1,x)λ

tSx
t,0.
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Discrete Feature Vectors Worked Examples

Simple, Fast Hierarchical IBP

James’ more general theory allows more creativity in construction.

Bernoulli-Beta-Beta process

model is a hierarchy of Bernoulli-Beta processes

infinite feature vector ~λ is a Beta Process as before;

these varied with point-wise Beta distributions to create a set of
parent nodes ~ψj , so ψj ,k ∼ Beta(αλj ,k , α(1− λj ,k))

discrete features ordered in a hierarchy below nodes j so
xi ,k ∼ Bernoulli(ψj ,k) for j the parent of node i .

Use hierarchical Dirichlet process techniques to implement efficiently.

Buntine (Monash) LSM Tuesday 27th January, 2015 60 / 100



High Performance Topic Models (with Swapnil Mishra) Topic Models

Outline

1 Background

2 Non-parametric Bayesian Methods

3 Discrete Feature Vectors

4 High Performance Topic Models (with Swap-
nil Mishra)

Topic Models
Background
Evolution of Models
Our Non-parametric Topic Model
Experimental Comparisons

5 Twitter Opinion Topic Model (with Kar Wai
Lim)

6 Segmentation with a Structured Topic Model

7 Conclusion

Buntine (Monash) LSM Tuesday 27th January, 2015 61 / 100



High Performance Topic Models (with Swapnil Mishra) Topic Models

Component Models, Generally

image−→

Prince, Queen,
Elizabeth, title,
son, ...

school, student,
college, education,
year, ...

John, David,
Michael, Scott,
Paul, ...

and, or, to , from,
with, in, out, ...

text−→

13 1995 accompany and(2) andrew at

boys(2) charles close college day de-

spite diana dr eton first for gayley

harry here housemaster looking old on

on school separation sept stayed the

their(2) they to william(2) with year

Approximate faces/bag-of-words (RHS) with a linear combination of
components (LHS).
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High Performance Topic Models (with Swapnil Mishra) Topic Models

Matrix Approximation View

W ' L ∗ΘT

Different variants:

Data W Components L Error Models

real valued unconstrained least squares PCA and LSA
non-negative non-negative least squares learning codebooks, NMF
non-neg integer non-negative cross-entropy topic modelling, NMF
real valued independent small ICA
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High Performance Topic Models (with Swapnil Mishra) Topic Models

Why Topic Models?

Topic Models discover hidden themes in text data to aid
understanding.

Latent Dirichlet Allocation Model (LDA, Blei et al. 2003).

Recent research develops higher performance topic models.

But why should you care?
Moreover, why should I care?
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High Performance Topic Models (with Swapnil Mishra) Topic Models

Topic Models: Potential for Semantics

Following sets of topic words created from the New York Times 1985-2005
news collection using hca (see Buntine and Mishra, KDD 2014):

career,born,grew,degree,earned,graduated,became,studied,graduate

mother,daughter,son,husband,family,father,parents,married,sister

artillery,shells,tanks,mortars,gunships,rockets,firing,tank

clues,investigation,forensic,inquiry,leads,motive,investigator,mystery

freedom,tyranny,courage,america,deserve,prevail,evil,bless,enemies

viewers,cbs,abc,cable,broadcasting,channel,nbc,broadcast,fox,cnn

anthrax,spores,mail,postal,envelope,powder,letters,daschle,mailed

Topic models yield high-fidelity semantic associations!
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Topic Models: Just an Intermediate Goal

Topic models are the leading edge of a new wave of deep latent semantic
models applied to real NLP tasks:

e.g., document segmentation, word sense disambiguation, facet discovery
for sentiment analysis, unsupervised POS discovery, social networks,
...

in the middle of this
segmentation model is a
topic model

i.e., we don’t care about topic models per se!
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ASIDE: Aspects, Ratings and Sentiments

“Jointly Modeling Aspects, Ratings and
Sentiments for Movie Recommendation
(JMARS),” Diao, Qiu, Wu, Smola,
Jiang and Wang, KDD 2014.

State of the art sentiment model.

Typical methods currently lack probabil-
ity vector hierarchies.
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Evaluation

David Lewis (Aug 2014) “topic models are like a Rorschach inkblot test”
(not his exact words .... but the same idea)

Perplexity: measure of test set likelihood;
equal to effective size of vocabulary;
we use “document completion,” see Wallach, Murray,
Salakhutdinov, and Mimno, 2009;
however it is not a bonafide evaluation task

PMI: measure of topic coherence: “average pointwise mutual
information between all pairs of top 10 words in the topic”
see Newman, Lau, Grieser, and Baldwin, 2010; Lau,
Newman and Baldwin, 2014
but at least it corresponds to a semi-realistic evaluation task
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High Performance Topic Models (with Swapnil Mishra) Background

Previous Work

“Hierarchical Dirichlet Processes,” Teh, Jordan, Beal, Blei 2006.

“Rethinking LDA: Why priors matter,” Wallach, Mimno, McCallum, 2009.

“Accounting for burstiness in topic models,” Doyle and Elkan 2009.

“Topic models with power-law using Pitman-Yor process,” Sato and
Nakagawa 2010

Sampling table configurations for the hierarchical Poisson-Dirichlet process,”
Chen, Du and Buntine 2011.

“Practical collapsed variational Bayes inference for hierarchical Dirichlet
process,” Sato, Kurihara, and Nakagawa 2012.

“Truly nonparametric online variational inference for hierarchical Dirichlet
processes,” Bryant and Sudderth 2012.

“Stochastic Variational Inference,” Hoffman, Blei, Wang and Paisley 2013.

“Latent IBP compound Dirichlet Allocation,” Archambeau,
Lakshminarayanan, Bouchard 2014.
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High Performance Topic Models (with Swapnil Mishra) Background

Text and Burstiness

Original news
article:

Women may only account for 11% of all Lok-Sabha MPs
but they fared better when it came to representation in
the Cabinet. Six women were sworn in as senior ministers
on Monday, accounting for 25% of the Cabinet. They
include Swaraj, Gandhi, Najma, Badal, Uma and Smriti.

Bag of words:

11% 25% Badal Cabinet(2) Gandhi Lok-Sabha MPs Mon-
day Najma Six Smriti Swaraj They Uma Women account
accounting all and as better but came fared for(2) in(2)
include it may ministers of on only representation senior
sworn the(2) they to were when women

NB. “Cabinet” appears twice! It is bursty
(see Doyle and Elkan, 2009)
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High Performance Topic Models (with Swapnil Mishra) Background

Aside: Burstiness and Information Retrieval

burstiness and eliteness are concepts in information retrieval used to
develop BM25 (i.e. dominant TF-IDF version)

the two-Poisson model and the Pitman-Yor model can be used to
justify theory (Sunehag, 2007; Puurula, 2013)

relationships not yet fully developed
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Evolution of Models

wd,n ~φk

zd,n

~θd

α

β

N

D

K

LDA- Scalar

original LDA
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Evolution of Models

wd,n ~φk

zd,n

~θd

~α

~β

N

D

K

LDA- Vector
adds asymmetric Dirichlet prior like

Wallach et al.;
is also truncated HDP-LDA;

implemented by Mallet since 2008 as
assymetric-symmetric LDA

no one knew!
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High Performance Topic Models (with Swapnil Mishra) Evolution of Models

Evolution of Models

wd,n ~φk

zd,n

~θd 0, bθ

~α

~β

0, bα

N

D

K

HDP-LDA
adds proper modelling of topic prior

like Teh et al.
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Evolution of Models

wd,n ~φk

aφ, bφzd,n

~θd aθ, bθ

~α

~β

aβ , bβ

aα, bα

N

D

K

NP-LDA
adds power law on word distributions

like Sato et al. and estimation of
background word distribution
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Evolution of Models

wd,n ~ψk

aψ, bψ

~φk

aφ, bφzd,n

~θd aθ, bθ

~α

~β

aβ , bβ

aα, bα

N K

D

K

NP-LDA with
Burstiness

add’s burstiness like Doyle
and Elkan
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Our Non-parametric Topic Model

wd,n ~ψk

aψ, bψ

~φk

aφ, bφzd,n

~θd aθ, bθ

~α

~β

aβ , bβ

aα, bα

N K

D

K

Figure: Non Parametric Topic Model

{~θd} = document⊗topic matrix

{~φk} = topic⊗word matrix

~α = prior for document⊗topic
matrix

~β = prior for topic⊗word
matrix

Full fitting of priors, and
their hyperparameters.

Topic⊗word vectors ~φk
specialised to the document
to yield ~ψk .
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Our Non-parametric Topic Model, cont.

wd,n ~ψk

aψ, bψ

~φk

aφ, bφzd,n

~θd aθ, bθ

~α

~β

aβ , bβ

aα, bα

N K

D

K

Figure: Non Parametric Topic Model

The blue nodes+arcs are
Pitman-Yor process hierarchies.

Note in {~ψk} there are hundreds
times more parameters than data
points!
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Our Non-parametric Topic Model, cont.

wd,n ~ψk

aψ, bψ

~φk

aφ, bφzd,n

~θd aθ, bθ

~α

~β

aβ , bβ

aα, bα

N K

D

K

Figure: Non Parametric Topic Model

The red nodes are
hyper-parameters fit with
Adaptive-Rejection
sampling or slice
sampling.

Use DP on document side
(aα = 0, aθ = 0) as fitting
usually wants this anyway.
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Our Non-parametric Topic Model, cont.

wd,n ~nψ,d,k , ~tψ,d,k

aψ, bψ

~nφ,k , ~tφ,k

aφ, bφ
zd,n

~nθ,d , ~tθ,d aθ, bθ

~nα

~nβ

aβ , bβ

aα, bα

N

KD
K

Figure: Non Parametric Topic Model

Auxiliary latent variables
(the ~t) propagate part
of the counts (their ~n)
up to the parent.

We keep/recompute
sufficient statistics for
matrices.

e.g. the ~ψ statistics
~nψ,d,k , ~tψ,d,k are not
stored but recomputed
from booleans as
needed.

Double the memory of

regular LDA, and only

static memory.
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Design Notes

Hierarchical priors: whenever parts of the system seem similar, we give
them a common prior and learn the similarity.

Estimating parameters: whenever parameters cannot be reasonable set, we
learn them instead.

Burstiness: we developed a Gibbs sampler that acts as a front end to
any LDA-style model with Gibbs:

implemented as a C function that calls the Gibbs
sampler
adds smallish memory (20%) and time (20%) overhead
in all, NP-LDA with burstiness is double memory and
time to regular LDA Gibbs sampling
multi-core implementation good for upto 8 core
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Performance on Reuters-21578 ModLewis Split

Training on 11314 news articles with vocabulary of 16994.
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Perplexity performance on MLT Data for different Topics

2691 abstracts from the JMLR including 306 test documents with a
vocabulary of 4662 words
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Comparison to PCVB0 and Mallet

Kos 7conf Enron News20 WSJ3000
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Comparison with Sato, Kurihara, Nakagawa, KDD 2012

PCVB0
hca HDP
mallet Asym
hca NP-LDA

Protocol is train on 80%

of all documents then us-

ing trained topic probs

get predictive probabili-

ties on remaining 20%,

and replicate 5 times.

Data contributed by Sato. Protocol by Sato et al.

PCVB0 is by Sato, Kurihara, Nakagawa KDD 2012.

Mallet (asymmetric-symmetric) is a truncated HDP implementation.
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Comparison to Bryant+Sudderth (2012) on NIPS data
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High Performance Topic Models (with Swapnil Mishra) Experimental Comparisons

Comparison to FTM and LIDA

FTM and LIDA use IBP models to select words/topics within LDA.
Archambeau, Lakshminarayanan, and Bouchard, Trans IEEE PAMI 2014.

Data KOS NIPS

FTM (1-par) 7.262±0.007 6.901±0.005
FTM (3-par) 7.266±0.009 6.883±0.008
LIDA 7.257±0.010 6.795±0.007

HPD-LDA 7.253±0.003 6.792±0.002
time 3 min 22 min

NP-LDA 7.156±0.003 6.722±0.003

KOS data contributed by
Sato (D=3430, V=6906).
NIPS data from UCI
(D=1500, V=12419).

Protocol same as with
PCVB0 but a 50-50 split.
Figures are log perplexity.
Using 300 cycles.

Better implementation of HDP-LDA now similar to LIDA.

But LIDA still substantially better than LDA so we need to consider
combining the technique with NP-LDA.
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Conclusion on Topic Models

NP-LDA model is about 50% slower than HDP-LDA but usually
performs substantially better

most previous work failed to show this

burstiness has substantially improved topic comprehensibility and
dramatically improved perplexity

now available, efficiently, for a broad variety of models

NP-LDA using block table indicator Gibbs sampling methods from
Chen et al. (2011) are superior to (several) state-of-the-art
algorithms.

simple (4-8 cpu) multicore version available

Still need to explore IBP (as in LIDA) and split-merge techniques.

Grab our topic modelling code from

https://github.com/wbuntine/topic-models

http://mloss.org/software/view/527/

See KDD 2014 paper by Mishra and Buntine.
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Twitter Opinion Topic Model (with Kar Wai Lim)

Aspect-based Opinion Aggregation
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Twitter Opinion Topic Model (with Kar Wai Lim)

Explaining the Model
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Twitter Opinion Topic Model (with Kar Wai Lim)

Explaining the Model, cont.
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Segmentation with a Structured Topic Model Document Segmentation (with Lan Du and Mark Johnson)

Task, Roughly

Passage: contiguous text with no boundary, e.g., a sentence

Segment: consecutive text passages that are semantically related.

Document: a sequence of topically coherent text segments.

Document Segmentation Task: (roughly) given a document as a
monolithic block of text, where should we put the segment boundaries.
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Segmentation with a Structured Topic Model Document Segmentation (with Lan Du and Mark Johnson)

Motivation–Structured Topic Modelling

Structured topic models (STM) by Du et al., (2010): hierarchical topic
models with non-parametric Bayesian methods.

µ 

º2  º1  º3  

u1  u2  u3  u4  u6  u5  u7  u8  u9  u10  

document)

segment)

passage)

Has a hierarchy of topic
probability vectors cor-
responding to document
structure.
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Segmentation with a Structured Topic Model Document Segmentation (with Lan Du and Mark Johnson)

Bayesian Segmentation

Bayesian word segmentation models (Goldwater et al., 2009)

Learn to place boundaries after phonemes in an utterance.

A pointwise boundary sampling algorithm: compute the probability of
placing a word boundary after each phoneme.

u1  u2  u3  u4  u6  u5  u7  u8  u9  u10  

Motivation:

treat text passages like phonemes in the model,

i.e., estimate text passage boundaries as per phoneme
boundaries.
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Segmentation with a Structured Topic Model With a Structured Topic Model

Problem

Problem:

µ 

º2  º1  º3  

u1  u2  u3  u4  u6  u5  u7  u8  u9  u10  

µ 

u1  u2  u3  u4  u6  u5  u7  u8  u9  u10  

Hypothesis: simultaneously learning topic segmentation and
topic identification should allow better detection of topic
boundaries.
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Segmentation with a Structured Topic Model With a Structured Topic Model

Segmentation Model–Generative process

A segmentation model
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Generative process

~φ ∼ Dirichlet(~γ)

~µ ∼ Dirichlet(~α)

π ∼ Beta(~λ)

~ν ∼ PYP(a, b, ~µ)

ρ ∼ Bernoulli(π)

z ∼ Discrete(~νs)

w ∼ Discrete(~φz)

z : topic assignment of word w ;

N: the number of words in a passage.
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Posterior Inference–General Picture

We need to sample the topic assignments z and segment boundaries
ρ.
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Experiments on two meeting transcripts
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Figure: Probability of a topic boundary, compared with gold-standard
segmentation on one ICSI transcript.

Gold Standard {77, 95, 189, 365, 508, 609, 860}
PLDA {96, 136, 203, 226, 361, 508, 860}
TSM {85, 96, 188, 363, 499, 508, 860}
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Conclusion of Segmentation with a Structured Topic Model

Paper given at NAACL 2013, main author Lan Du, also Mark Johnson

A new hierarchical Bayesian model for unsupervised topic
segmentation, using Bayesian segmentation + structured topic
modelling.

A novel sampling algorithm for splitting/merging restaurant(s) in
CRP.

Code is available at Lan Du’s website.

Now running multi-core.
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Fun with Bibliographies (Lim etal ACML 2014)

objects, face, recognition,
motion, tracking

wavelet, segmentation,
transform, motion, shape

network, networks,
distributed, design, parallel

classifiers, classifier, accuracy,
prediction, machine-learning

linear, function, functions,
approximation, optimization

retrieval, web, text,
image-retrieval, document

bayesian, networks, inference,
estimation, probabilistic

robot, control, robots,
environment, mobile-robot

language, word, recognition,
text, training

search, optimization, genetic-algorithms,
genetic-algorithm, evolutionary

network, neural-networks,
networks, neural-network, neural

user, human, research,
interaction, speech

satisfiability, logic,
reasoning, boolean, sat

speech, speech-recognition,
recognition, acoustic, audio

mining, data-mining,
clustering, patterns, database

clustering, kernel,
space, feature, distance

data-mining, network,
software, detection, security

reinforcement, control,
state, policy, planning

channel, coding, error,
rate, estimation

agents, games, game,
agent, reinforcement

g hinton

m gales

s singh

y rui

b schölkopf

z ghahramani

t dietterich

s thrun

r kohavi

m kearns

n friedman

t joachims

d koller

y freund

t hofmann

j quinlan

c burges

d lowe

y yang

s chen

d aha

d heckerman

r schapire

j lafferty

a blum

r agrawal

r sutton

j friedman

t cootes

p viola

k murphyp belhumeur

m swain

l kaelbling

w cohen

m isard
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Conclusion

Conclusion

Latent Semantic Modelling with non-parametric Bayesians methods!

Hierarchical stick-breaking and Chinese restaurant process methods
seem inferior to block table indicator samping.

See the individual papers.

Read my blog and tutorials

https://topicmodels.org

“A tutorial on non-parametric methods”

Thank You ... Questions?
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